


Advanced Topics in Computational Solid Mechanics Industrial Applications

Eduardo N. Dvorkin

Stanford University Mechanical Engineering Winter Quarter 2010

www.simytec.com

Objectives

The course objective is to discuss the use of computational simulation methods for analyzing and optimizing production processes and for developing new products.

Course topics

Topic	Section #
Introduction	1
Kinematics of the continuous media	2
Stress measures	3
The Principle of Virtual Work. Linear formulation and incremental formulation for nonlinear analyses	4
Constitutive relations.	5
FEM review: linear and nonlinear problems	6
Modeling of bulk metal forming processes. The flow formulation. Industrial applications.	7
General nonlinear shell elements.	8
Tracking nonlinear equilibrium paths: the Riks method	9
Modeling of steel pipes collapse: industrial examples	10

Some references

- Malvern L. (1969), Introduction to the mechanics of a continuous medium, Prentice-Hall, Inc., Englewood Cliffs, New Jersey.
- Marsden J.E. and Hughes T.J.R. (1983), Mathematical Foundations of Elasticity, Dover.
- Dvorkin E.N. and Goldschmit M.B. (2005), Nonlinear Continua, Springer, Berlin.
- Simo J.C. and Hughes T.J.R. (1998), *Computational Inelasticity*, Springer, N.Y.
- Bathe K.J. (1996), *Finite Element Procedures*, Prentice Hall, Upper Saddle River, NJ.
- Zienkiewicz O.C. and Taylor R.L. (1989), The Finite Element Method, McGraw-Hill.