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Boundary conditions: review
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Boundary conditions: review
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Boundary conditions: review
Natural and Forced Convection
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Boundary conditions: review
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Boundary conditions: condensation
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Time integration
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Time integration
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Time integration
Time integration with convection therms
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Time integration

Time integration with convection therms
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Time integration
Time integration with convection therms
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Time integration
Alpha Method

( ) FTKNTM =++
•
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The objective is to obtain an approximation for                given the value of 
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Time integration: Alpha Method
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Time integration: Alpha Method

α
ααα

α

1=α Implicit Euler backward Method, unconditionally stable ( )tΔϑ

0=α Explicit Euler forward Method, conditionally stable
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Cranck Nicolson method
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Time integration: Alpha Method

From Zienkiewicz & Taylor, The Finite
Element Method
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Time integration: Alpha Method

Approximation error
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Time integration
Penetration depth measures the distance or thickness of thermal energy propagating into Penetration depth measures the distance or thickness of thermal energy propagating into 
the surface through conduction.
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Non-linear equations
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Non-linear equations: Picard Method

It is called successive substitutions method.

Starting with an initial guess  

Evaluate kk += 1
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Until the result no longer changes to within a specified toleranceUntil the result no longer changes to within a specified tolerance
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Non-linear equations: Picard Method

Picard's method is the easiest method to program and usually has large areas of 
convergence .g

Converges linearly and for many problems its convergence rate is very smooth 

The most important application of Picard's method is to use it as the first 
iterations of the Newton-Raphson method .
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Non-linear equations: Newton-Raphson Method

Historical Note.

Newton's work was done in 1669 but published muchNewton s work was done in 1669 but published much
later. Numerical methods related to the Newton Method were used by al-
Kash, Viete, Briggs, and Oughtred, all many years before Newton.

Raphson, some 20 years after Newton, got close to Newton Equation, but only for
polynomials of degree 3, 4, 5, . . . , 10.

Raphson like Newton seems unaware of the connection between hisRaphson, like Newton, seems unaware of the connection between his
method and the derivative. The connection was made about 50 years later
(Simpson, Euler), and the Newton Method finally moved beyond polynomial
equations. The familiar geometric interpretation of the Newton Method may
have been first used by Mourraille (1768). Analysis of the convergence of
the Newton Method had to wait until Fourier and Cauchy in the 1820s.
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Non-linear equations: Newton-Raphson Method
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Non-linear equations: Newton-Raphson Method
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Non-linear equations: Newton-Raphson Method

Transient state problem
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Non-linear equations: Newton-Raphson Method
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Non-linear equations: Newton-Raphson Method

For one degree of freedom 

( )1−kx( )kx
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Non-linear equations: Newton-Raphson Method

E l  W   th  N t R h M th d t  fi d   l ti  Example: We use the Newton-Raphson Method to find a non-zero solution 
of          

x = 2 sinx

(a) Start     x(0)= 1.1

(b) Start     x(0)= 1.5
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Non-linear equations: Newton-Raphson Method

If the initial estimate is not close enough to the root, the Newton-Raphson
M h d        h   Method may not converge, or may converge to the wrong root.

The successive estimates of the Newton-Raphson Method may converge to the 
root too slowly, or may not converge at all.
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Non-linear equations: Newton-Raphson Method

T

T

( )1T̂Δ ( )2T̂Δ

Ttt ˆΔ+Tt ˆ Temperature

32
www.simytec.com



Non-linear equations: Newton-Raphson Method
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Non-linear equations: Newton-Raphson Method

Convergence

Quadratic convergence   when  converges
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Non-linear equations: Newton-Raphson Method

Convergence

(1) First property

• If the tangent matrix                   is nonsingular
( )1−Δ+ ktt K• If the tangent matrix                   is nonsingular

• If                and its first derivatives with respect to               are 

T
K

( )1−Δ+ ktt F
( )1ˆ −Δ+ ktt

T

continuous in a neighborhood of the solution

• If                will be closer to            
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*
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tt Δ+
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than             and the sequence of iterative solutions converges to

T T
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Non-linear equations: Newton-Raphson Method

Convergence

(2) Second property – Lipschitz continuity

• If the tangent matrix satisfies
( ) ( ) ( ) ( )11 ˆˆ −Δ+Δ+−Δ+Δ+ −≤−

kttkttk
T

ttk
T

tt TTLKK

for all                                               in the neighborhood of

d L 0

( ) ( )1ˆˆ −Δ+Δ+ kttktt
TandT

*
T̂

tt Δ+

and L>0

then convergence is quadratic.

This means that if the error after iteration (k) is the order e, then the error 
after iteration (k+1) will be of the order e2
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Modified Newton-Raphson Method

N-R iteration  is recognized as an expensive computational cost per iteration due 

to the calculation and factorization of the tangent matrix. Then, the use of a 

modification of the full N-R algorithm can be effective.

Maintains the            o tangent matrix                  constant during the iterations or 

it is modified each n iterations

( )1−Δ+ k
T

tt K( )xf '

Advantage: saving computational effort 

Disadvantage: loss of quadratic convergence g q g

The choice of time step depend on the degree of non-linearities
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Quasi-Newton Methods: BFGS

As an alternative to forms of N-R iteration, a class of methods known as 
matrix update methods or quasi-Newton methods has been developed .

These methods involve updating the coefficient matrix to provide a secant
approximation to the matrix from iteration (k-1) to (k).

BFGS:  Broyden, Fletcher, Goldfarb and Shanno method
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Quasi-Newton Methods: BFGS
Inicialize las

k = k+1

Inicialize las
matrices y vectores, 

k=0

k = k+1

t+∆t∆T(k) = (t+∆tKT‐1)(k‐1)  . (t+∆tR ‐ t+∆tF(k‐1)) 

Calcular t+∆tF(k)( t+∆tT(k) )

(t+∆tKT‐1)(k) = A(k)T . (t+∆tKT‐1)(k‐1) . A(k)t+∆tT(k) =  t+∆tT(k‐1) + t+∆t∆T(k)

F ( T )

Converge 
en alguna  no
norma

si
Siga con el paso 

de tiempo sig iente
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Quasi-Newton Methods: BFGS

(k)T( )TkA
( )kA

TT

TT
T T

TT
T

40
www.simytec.com



Quasi-Newton Methods: BFGS
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is positive definite and symmetric, to avoid numerically problems, the 
condition number is calculated. 

The update is performed if:
( ) ( )510=< nexampleasnc k
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BFGS with linear searches 
( ) ( ) ( )1ˆˆˆ −Δ+Δ+Δ+ Δ

kttkttktt TTT β
( ) ( ) ( )Δ+ −=Δtt TTT β

b is a scalar multiplier

It is varied until the component of the out-of-balance loads in the 

direction                             is small.
( )ktt T̂ΔΔ+ TΔ

( ) ( )( ) ( ) ( )( )1ˆˆ −Δ+Δ+Δ+Δ+Δ+Δ+ Δ−ΔΔ≤Δ−ΔΔ ktttt
Tkttktttt

Tktt FRTTOLFRT ( ) ( )O

Linear searches are made with simple algorithms such as bisection 

Linear searches are computationally expensive because they must calculate 
multiple times in each iteration ( )ktt FΔ+
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BFGS with linear searches 
Inicialize las

k = k+1

matrices y vectores, 
k=0

t+∆t∆T(k) = (t+∆tKT‐1)(k‐1)  . (t+∆tR ‐ t+∆tF(k‐1)) 

Calcular t+∆tF(k)( t+∆tT(k) )

(t+∆tKT‐1)(k) = A(k)T . (t+∆tKT‐1)(k‐1) . A(k)t+∆tT(k) =  t+∆tT(k‐1) +β t+∆t∆T(k)

Converge 
en alguna 
norma

no

si
Siga con el paso 

de tiempo siguiente
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Convergence criteria 

1) Convergence in temperatures ( )
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2) Convergence in porcentual values
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Examples on transitory heat transfer problems
Exercise 1: Obtain the FEA formulation for the Linear Transitory heat transfer problem

considering convection. Analyze the stability of the different time
integration

Exercise 2:   Consider the transitory heat transfer problem in a 1D beam discretizedy p
with 10 regular elements. Solve the finite element model with time 
integration for different alpha values (0; 0.5 and 1) for the following 
cases:

Heat transfer equation

Border Condition

Initial Condition

Use this non-dimensional numbers for the analysis:  
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Examples on transitory heat transfer problems

Exercise 3:  Consider a 90º semi-infinite cylinder. Sides AB and BC are subjected to 
prescribed temperature of 50º. The initial temperature profile is 0º. The heat capacity of 
the material is constant. Perform a transient analysis to calculate the temperature 
distribution within the semi infinite domain at different values of time  Use the Euler distribution within the semi-infinite domain at different values of time. Use the Euler 
Backward, Cranck Nicholson and Euler Forward Method.

The domain is discretized using a 10 × 10 mesh 
of 4 node 2 D conduction elementsof 4-node 2-D conduction elements.
The conduction matrix is evaluated using a 
consistent heat capacity matrix. The time
step is Δt = 0.016.
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