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Abstract

A new two-scale finite element formulation was developed for modeling J2 plastic deformation processes
(2D) in which shear band localizations take place. The formulation is based on the use of embedded
strong discontinuity modes which are triggered using a stress based criterion. The new formulation
does not require a specific mesh refinement to model the localization phenomena and provides mesh
independent results. The shear bands constitutive behavior is derived from the continuum properties
without the introduction of any ad hoc physical law.
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1 Introduction

During the plastic deformation of metals, under certain stress/strain conditions, a very narrow localized
zone of intense plastic shearing can occur: this phenomenon is called shear banding and has been profusely
described in the mechanics literature [1]-[4].
A theoretical elastoplastic analysis using the J2 plasticity model indicates that the shear bands are

localized along a line (zero width) and that the phenomenon is associated with a loss of uniqueness in the
problem solution.
The difficulty in modeling shear banding processes using J2 plasticity and standard finite element formu-

lations lies in the different scales that need to be used for the description of the global deformation in the
continuum and the localized deformation along zero width lines.
When standard finite element formulations are used for modeling plastic deformation processes in which

shear bands are present, the width of the shear bands is forced to be in the elements size scale.
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To illustrate on the results that are obtained when using standard finite element formulations for modeling
shear banding processes, in what follows we discuss two examples: in Fig. 1 we present the results obtained
modeling an elastoplastic plane strain sample under tension in which a shear band develops: while the Q1-
P0 element [5] cannot predict the shear band localization, diffusing therefore the deformation over a width
comprising several elements, the QMITC element [6] [7] localizes the shear band in one element; however,
even in this optimum case the solution is mesh dependent because the element size controls the shear band
transversal dimension; in Fig. 2 we present the QMITC results for the modeling of a threaded coupled
connection in a steel pipe; the shear band is localized in one element. We also show in Fig. 3 an etched
sample showing the actual localized deformation.

1.1 Background

For introducing the localization phenomenon in the finite element models several strategies have been devel-
oped; in Fig. 4 we present a schematic representation of them:

• Using a continuous displacement field: as it was discussed above the results are mesh dependent;
the elements formulation plays an important role in defining the capability for localizing the plastic
deformations [8].

• Introducing a weak discontinuity in the elements displacement field (d > 0 but small) [9].

• Introducing a strong discontinuity in the elements displacement field [10] [11].

Two kind of localization problems should be distinguished: fracture in brittle materials and shear-band
deformation in ductile metals. For both cases, once the localization is triggered almost all the deformation
concentrates in a narrow band. The triggering of the localization and the post-localization behavior are
described, in both cases, by different models.

1.1.1 Brittle fracture

For modeling the fracture of brittle materials like concrete, rocks and ceramics, the fracture initiation is
defined by a tensile stress larger than a threshold value and during fracture propagation we can observe
a softening in the load-displacement response; since a local constitutive relation showing strain softening
was proved to be thermodynamically unacceptable [12] [13] the phenomenon is modeled introducing a frac-
tomechanics concept: the fracture energy, which has been shown to be a material property [14] - [19]. The
different finite element methodologies that were developed for modeling the fracture process in brittle mate-
rials are [20]: the smeared crack approach [17], [21]-[24]; the discrete crack approach [25] [26]; finite elements
with embedded discontinuous strain fields [9] [27], finite elements with embedded discontinuous displacement
fields [10] [11] [28] [29] and the micropolar continuum theory [30] [31].

1.1.2 Shear bands

Regarding the shear-banding of elastoplastic materials, localization implies that the acoustic tensor becomes
singular [32]-[34]. For this to happen the material is required not to harden, [33]. For materials following
the von Mises (J2) associated plasticity model, the shear bands initiation and propagation are discussed in
the second section of this paper. Many techniques have been proposed for shear band modeling:
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• Enhanced strain field. First introduced in [9] the strain field was enhanced with a jump function
within each element crossed by the localization line. Many other enhancements were proposed, see
[20], [35]-[37].

• Extended finite element method (X-FEM). In Ref. [38] the authors enriched the finite element in-
terpolations near a crack by incorporating a discontinuous field through a partition of unity method;
this procedure was applied recently for the spatial discretization of the governing equations of shear
bands treated as strong discontinuities together with an embedded traction separation law applied to
cohesive surfaces [39]. In [40], focused on dynamic problems, the plastic evolution of the material that
surrounds the shear band is modeled enhancing the finite element interpolation with a fine scale strain
function.

• Unfitted finite elements techniques introduced in [41] [42] , have been used for shear bands in Refs.
[43] [44], where additional degrees of freedom are added to the nodes belonging to the elements crossed
by the discontinuity.

1.2 Our new formulation

Our objective in the present paper is to introduce a new two-scale finite element formulation to model, using
J2 plasticity, deformation processes that develop shear banding.
The constraints that we impose on our new formulation are:

1. It should not require a specific mesh refinement to model the localization phenomena and it should
provide mesh independent results.

2. Perfect plastic materials should not require the use of softening laws to localize, because softening
material properties have not been defined nor measured in the environment of J2 plasticity.

In the second section of this paper we review the conditions for the triggering of the shear banding
process and we formulate a stress based criterion. In the third section we present our new finite element
formulation for modeling shear band deformations. This new formulation incorporates a second scale via ad
hoc consideration of the displacement localization modes and it is based on the formulation of the embedded
localization lines [10] [11].
In the fourth section we present the numerical results that we obtained using our new formulation and

we show that it can model shear band localizations without introducing a softening stress/strain relation
providing mesh independent results. We also show that the results that we produce using our new formulation
are convergent when the mesh is refined even if a softening stress/strain relation is used.

2 Shear bands inception: a stress based criterion
During the elastoplastic deformation of a solid, considering the J2 associated plasticity model, the following
equations apply [45],
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tσij = tCE
ijkl (

tεkl − tεPkl) (1a)

tεPkl = tλ
∂ tf

∂σkl
(1b)

tf =
3

2
tsij

tsij − tσ2y = 0 . (1c)

In the above equations, written in a Cartesian coordinate system for infinitesimal strains and isotropic
hardening, tσij are the components of the Cauchy stress tensor at time (configuration) t, tCE

ijkl are the
components of the fourth order elastic constitutive tensor, tεkl are the components of the deformation
tensor, tεPkl are the components of the plastic deformation tensor,

tsij are the components of the deviatoric
part of the Cauchy stress tensor, tf = 0 is the yield function and tσy is the yield stress.
In a 2D geometry, a shear band can be characterized by a line with normal tn, the direction of the

displacement jump [[tu]], which we call tm and a scalar bandwidth d as proposed in [33] [34]. In Fig. 5
we draw a schematic representation of the above definitions, considering that the displacement jump in the
shear band is in the tangential direction (mode II) and d = 0.
It has been shown [32] that the band orientation can be determined from the singularity of the acoustic

stress tensor, since the vanishing of the determinant of the acoustic tensor at any point in the elastoplastic
continua indicates the fulfillment of the necessary bifurcation condition.
The elastoplastic constitutive tensor [46] is, for perfect plasticity

tCEP =

µ
κ− 2

3
G

¶
tg tg+ 2G tI4 − 2G

ts ts
ts : ts

(2)

where ts is the deviatoric stress tensor, κ the elastic bulk modulus, G the elastic tangential modulus, and

tI4 =
1

2

¡
tgik tgjl + tgil tgjk

¢
tg

i
tg

j
tg

k
tg

l
(3)

is the symmetric fourth order identity tensor. In these equations we indicate the tensorial product between
two tensors as ab (in other references it is indicated as a⊗b).
In [32] it is defined the acoustic constitutive tensor in a direction tn as,

tQ = tn · tCEP· tn =
µ
κ− 2

3
G

¶
tn · tg tg · tn+ 2G tn · tI4 · tn − 2G

ts : ts
tn · ts ts · tn. (4)

After some algebra we get,

tQ =

Ãµ
κ− 2

3
G

¶
tnj

tnk +G tni (δikδjl + δilδjk)
tnl −

2G
ts : ts

tni
tsij

tskl
tnl

!
tej

tek (5)

where tej are the unit base vectors of a Cartesian system.
To investigate the stress state that produces the necessary localization condition we define a new Cartesian

coordinate system bxi with bx1 in the tn−direction and bx2 in the tm−direction. In this system we write,
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det
³
tQ̂jk

´
= det

Ãµ
κ− 2

3
G

¶
tn̂j

tn̂k +G tn̂i (δikδjl + δilδjk)
tn̂l −

2G
ts : ts

tn̂i
tŝij

tŝkl
tn̂l

!
(6)

and,

det
³
tQ̂jk

´
=
1

3
G2
(3κ− 2G) tŝ211 + (3κ+ 4G)

tŝ222 + (3κ+ 4G)
tŝ233 + (6κ+ 8G)

tŝ223
ts: ts

. (7)

For the fulfillment of the localization condition – det
³
tQ̂jk

´
= 0 – we must have tŝ211 =

tŝ22 =
tŝ33 =

tŝ23 = 0. For a hydrostatic state these equations are fulfilled but when we calculate the value of det(tQ̂jk)
while reaching a hydrostatic stress state, we get an indetermination that we solve by taking directional limits;
for example,

lim
tŝ11→ 0tŝ22=tŝ33=tŝ12=tŝ13=tŝ23=0

det
³ bQjk

´
=
1

3
G2 (3κ− 2G) · (8)

When we perform the above calculation along all possible directions we find values ranging from 1
3G

2 (3κ− 2G)
to 1

3G
2 (6κ+ 8G) but for all cases det

³ bQjk

´
> 0, so no localization is possible. Hence to have localization

we must have either tŝ212 6= 0 or tŝ213 6= 0 or both. Therefore, for J2 plasticity,
a) The localization criteria based on stress components is that the stress tensor tσ must be able to fulfill

the above conditions for an orientation x̂.
b) The localization condition only depends on the current stress state.
c) The localization direction will lie in a plane orthogonal to one of the stress principal axes, since

tσ̂23 = 0.
d) The necessary condition for localization along the directions (bx1,2,3) is,

tbσ11 + tbσ22 = 2 tσh = 2
tbσ33 (9)

where tσh is one third of the first invariant of the stress tensor at the point.
e) The sufficient conditions for localization are Eqn. (9) together with,

tσ̂12 6= 0 (10)

If localization is not reached at plasticity onset, the stress conditions may be fulfilled later on the defor-
mation path.
We now examine the case of a specimen in simple tension. We first consider a plane strain specimen in

pure traction along x1-direction with no restrains in x2-direction. For this case is has been shown that the
out-of-plane stress tends to σ33 =

σ11
2 as the plastic deformation grows [47]. Using the above discussed

localization criteria, we find that for a direction bx1 at an angle α = π
4 with the x1− direction we fulfill Eqns.

(9, 10). The localization is attained in this case after some plastic deformation is developed and the stress
state evolves until it satisfies the localization criteria.
Considering an axisymmetric specimen, we find that the only possible non-zero shear strain is,

tσ13 6= 0 1 (11)

1Here “1” is the radial direction, “2” is the angular direction and “3” is the axial direction.
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hence, the localization direction will lie on a radial plane. This assures that the shear band growth will occur
under axisymmetric conditions until some instability (buckling) arises forcing the deformation to go out of
plane; hence, the modeling of the band growth does not require the use of a more complex and expensive
3D model.
Finally we consider the case of plane stress specimen in tension where, for perfect plasticity, the localiza-

tion condition in terms of the stress tensor components in the band aligned coordinate system bx is,
det

³
t bQjk

´
=

4G3κ (2 tσ̂22 − tσ̂11)
2

(κ+G)
¡
tσ̂211 +

tσ̂222
¢
− (κ+ 2G) tσ̂11 tσ̂22 + (3κ+ 4G) tσ̂212

= 0 (12)

hence, ¡
2 tσ̂22 − tσ̂11

¢2
= 0⇒ tσ̂11 = 2

tσ̂22. (13)

This condition shows no dependence on the shear stress σ̂12 and it can be fulfilled from the onset of the
plastic deformation. Using the components in the global (x1, x2) directions, we can calculate the angle α
between this global directions and the band oriented (bx1, bx2) directions:

α =

⎧⎪⎪⎨⎪⎪⎩
arctan

µ
2
√
9σ212−5σ11σ22+2σ211+2σ222−6σ12

2(2σ11−σ22)

¶
arctan

µ
−2
√
9σ212−5σ11σ22+2σ211+2σ222−6σ12

2(2σ11−σ22)

¶ if 2σ11 − σ22 6= 0. (14)

α = 0 otherwise

Solving numerically for a case of simple tension (tσ11 6= 0 ; tσ22 = 0 ;
tσ12 = 0) we get α = ± (35.26) ◦,

which is the usual value.

2.1 Materials with plastic hardening/softening

For materials with hardening/softening behavior, the fourth order constitutive tensor is [46],

tCEP =

µ
κ− 2

3
G

¶
tg tg+ 2G tI4 − 2G

1 + H+K
3G

ts ts
ts: ts

(15)

where H is the isotropic hardening modulus and K is the kinematic hardening modulus.
Particularizing for isotropic hardening we get the localization condition,

1

3
G2

G (9κ− 16G) tŝ211 +G (9κ+ 12G)
¡
tŝ222 +

tŝ233 + 2
tŝ223

¢
+H (4G+ 3κ)

£
ts: ts

¤
(3G+H)

£
ts: ts

¤ = 0. (16)

Under hardening conditions, H > 0, no localization can take place, but in softening we get from the
above that the H−value that produces localization is obtained from,

H = −3G
¡
tŝ211 +

tŝ222 +
tŝ233 + 2

tŝ223
¢£

ts : ts
¤ +

6G tŝ211
(3κ+ 4G)

£
ts : ts

¤ . (17)
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For H = 0 the above leads to Eqns.(9) and (10).
In Ref. [1] the impossibility of producing shear bands in a material with plastic hardening is discussed

on physical grounds.

3 The finite element formulation

In this section we present the finite element formulation that we developed, via a two-scale strategy based on
the strong discontinuity approach, for modeling the occurrence of shear bands in 2D elastoplastic problems
when using the associated J2 plasticity model.

3.1 The localized scale: strong discontinuity modes

The basis of our formulation is that when within an element the localization indicator triggers the inception
of a shear band, we have to introduce in the element displacements interpolation field a sliding discontinuity
along the predicted shear band direction; however, if we just make an obvious extension of the formulation
developed for frictional materials in [10] - [11], but using instead of the displacement discontinuity in the
direction normal to the crack (tn), a displacement discontinuity in the direction tangential to the shear band
(tm) we come across a kinematic inconsistency: as shown in Fig. 6, an element sliding along an internal
line increases its volume and this volume growth would require the continuous part of the deformation to
decrease its volume in order to fulfill the plastic J2 incompressibility constraint. It is worth noting that
when modeling a type I failure mode, as shown in [10] - [11], this volume increase is sought because it is a
characteristic of materials with opening cracks.
Hence, at the element were the localization indicator triggers the discontinuity, instead of introducing a

displacement jump along a line we introduce a displacement mode that while modeling the local scale of the
shear bands behavior avoids the above discussed kinematic inconsistency. For this purpose we use,

U=Ucont+ Usb (18)

where in the vector U we have the nodal incremental displacements which are decomposed into: Ucont,
the displacements that model the continuous scale and Usb, the displacements that model the shear band
localization.
We now introduce,

Usb = γ Θ (19)

where Θ are the nodal displacements corresponding to the localized deformation pattern, and γ is a scalar
parameter which is part of the problem unknowns.
To build Θ, we consider that linear quadrilateral elements have 8 eigenmodes which, in the case of

undistorted elements, can be easily decomposed into: 3 rigid body modes, 1 volume change mode, 2 pure
bending modes and 2 pure shear modes. Using the two shear modes we can build a base of pure shear modes
in the isoparametric natural element space (r, s). Using this “shear base” for an undistorted element, we can
compose a pure shear eigenmode in any desired direction. However, in the case of a distorted element, the
resultant shear mode is associated with a volume change; hence, to enforce the plastic incompressibility, the
“shear base” is enhanced using the volume change eigenmode . Finally the vector Θ is determined so as to
produce the maximum shear at a direction coincident with the band direction and zero volume change.
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To determine Θ we first work with the 2 × 2 undistorted 4-node element in the natural coordinates
system (r, s), for which in Table I we define the deformed element nodal coordinates, corresponding to the
three deformation eigenmodes in the “shear base”: the two pure shear modes and the volume change mode,
depicted in Fig. 7.

tΦ1r
tΦ1s

tΦ2r
tΦ2s

tΦ3r
tΦ3s

tΦ4r
tΦ4s

tΦI
1
2

3
2 −12

3
2 −12 −32

1
2 −32

tΦII
3
2

3
2 −12

1
2 −32 −32

1
2 −12

tΦIII
3
2

3
2 −32

3
2 −32 −32

3
2 −32

Table I. Nodal coordinates in the (r, s) natural system for the three eigenmodes
that constitute the “shear base”

Using the three sets of nodal coordinates displayed in Table I and the unstrained nodal coordinates¡
rk, sk

¢
we define three orthogonal nodal displacement vectors,

tΨk
A =

£¡
tΦkA

¢
r
− rk

¤
er +

£¡
tΦkA

¢
s
− sk

¤
es. (20)

In the above equation (r, s) are the isoparametric natural coordinate shown in Fig. 7; (er; es) are
orthonormal base vectors along those directions; the subindex A = I...III indicates the deformation mode
and the upper index k = 1...4 indicates the node.
For 4-node elements defined in the (x1, x2) coordinate system we generalize Eqn. (20) using the following

extrapolation,

tΨk
A =

h
hj
¡¡

tΦkA
¢
r
,
¡
tΦkA

¢
s

¢
xji − xki

i
ei (21)

where xki is the i−coordinate of the k−node, the hj are the isoparametric interpolation functions [5] and the
index j indicates a summation from 1 to the number of nodes.
At any point inside the isoparametric element, the displacements corresponding to the “shear base”

modes are interpolated as,

tΨA = hk
tΨk

A. (22)

We now compute, at the element center, the strain components resulting from the application of the
three modes that we defined above,

εI = BcΨI (23a)

εII = BcΨII (23b)

εIII = BcΨIII (23c)

where Bc = B(xo1, xo2) is the strain-displacements matrix calculated at the element center
2. The linear

combination of the above defined strain fields results in the shear band localization strains εsb, where
βI , βII and βIII are constant parameters to be determined,

εsb = βIεI + βIIεII + βIIIεIII = Bc (βIΨI + βIIΨII + βIIIΨIII) (24)

2 It is important to realize that the volume change of a quadrilateral element can be exactly integrated using a one point
Gauss quadrature (see Appendix).
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To calculate βI , βII and βIII , we request that the strains εsb fulfill incompressibility; hence, using
Voight notation,

(ε1 + ε2)sb = βI (ε1 + ε2)I + βII (ε1 + ε2)II + βIII (ε1 + ε2)III = 0 (25a)

(ε1 + ε2 + ε4)sb = βI (ε1 + ε2 + ε4)I + βII (ε1 + ε2 + ε4)II + βIII (ε1 + ε2 + ε4)III = 0 (25b)

where the first of the above equations corresponds to plane stress /plane strain cases while the second one
to axisymmetric problems. We have one equation with three unknowns; therefore, we have to impose two
constrains.
As a first constrain we adopt a value for βIII . If εI and εII are incompressible modes we adopt βIII =

0 since no volume correction is required to satisfy the incompressibility condition ; if not we adopt βIII = 1.
The second constrain is that the maximum distortion is localized at an angle α, defined by the shear

band direction, hence,

(ε3)sb
(ε1 − ε2)sb

=
βI (ε3)I + βII (ε3)II + βIII (ε3)III

βI (ε1 − ε2)I + βII (ε1 − ε2)II + βIII (ε1 − ε2)III
= tan

³
2α+

π

2

´
(26)

Solving the Eqns. (25a or 25b and 26) the parameters βI and βII are determined. Then we determine
and normalize Θ; from (24),

Θ =
βIΨI + βIIΨII + βIIIΨIII

|βIΨI + βIIΨII + βIIIΨIII |
We summarize by stating that the obtained localized displacement mode has maximum distortion along

the shear band direction, no volume change and a norm |Θ| = 1.

3.2 The element equilibrium equations

For the body shown in Fig. 8 , in equilibrium at time t, and considering that a shear band has already been
triggered, we seek the equilibrium configuration for time t + ∆t, via the principle of virtual work. For a
“material nonlinear only analysis” (geometrically linear analysis) [5] we get, using the notation in Fig. 9,Z

V

δ [εcont]
T t+∆tσcont dv + δ [Usb]

T t+∆tFsb =

Z
S

δuT t+∆tp ds. (27)

In the above equation,

V = V1 ∪ V2 (28a)

S = S1 ∪ S2. (28b)
t+∆tp = t+∆tp

1
∪ t+∆tp

2
(28c)

The vectors εcont and
t+∆tσcontare related to the continuous scale while in the vector

t+∆tFsb we have
the nodal forces generated by the shear band localization modes (localization scale).
Using Eqns. (18) and (19) we get for the continuous displacements,
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ucont = H (U− γΘ) (29a)

εcont = B (U− γΘ) (29b)

where H is the displacements interpolation matrix, B is the displacements-strains matrix, U the nodal
incremental displacements and γ the generalized displacement in the Θ direction.
Using the continuum constitutive relation we can write,

t+∆tσcont =
tσcont +

t
h
CEP

i
B (U− γΘ) . (30)

It is necessary to establish the band forces evolution along an incremental step. To accomplish this we
relate the continuum scale to the shear band scale via the plastic strains: we postulate that the incremental
localized strains equal the incremental continuum strains produced by the localized displacement mode,

εsb = B Θ γ . (31)

Hence, the relation between the incremental equivalent plastic deformation (ε̄) and the localized strains
is,

ε̄2 =
2

3
εPij ε

P
ij =

2

3
εTsb

⎡⎣ 1 0 0
0 1 0
0 0 1

2

⎤⎦
| {z }

A

εsb =
2

3
γ ΘT BTA B Θ γ =

2

3
ϕ2γ2 (32)

and,

t+∆tγ = tγ + γ (33a)
t+∆tε̄ = tε̄+ ε̄ (33b)

In the above equations,

• A is the matrix required to preserve the dyadic tensorial product in Voight notation,

• for plane stress and plane strain elements εTsb =
£
(εsb)xx (εsb)yy 2 (εsb)xy

¤
,

• for axisymmetric elements εTsb =
£
(εsb)xx (εsb)yy (εsb)θθ 2 (εsb)xy

¤
,

• ϕ2 = ΘT BTA B Θ 3 .

Hence,

ε̄ =

"r
2

3
ϕ

#
γ . (34)

3For axisymmetric problems A is a (4× 4) matrix.
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We impose that the band will only deform by sliding along its direction and that it will behave as a
rigid-plastic solid when the sliding is increased. If unloading conditions arise the band will remain at its last
plastic deformation stage and the continuous part of the model will produce the elastic unloading.
Since for each element where localization has taken place we keep the shear band direction constant, if

the band is active the equation – det
³
tQ̂jk

´
= 0 – has to be fulfilled along all deformation stages; hence,

from Eqn.(7), it is obvious that the stress tensor has to evolve radially if the band is active, therefore

t+∆tσij = k tσij (35a)

k 1 1 . (35b)

Since during the deformation process the material remains inside the plastic range, its yield stress has to
evolve as,

t+∆tσy = k tσy . (36)

Equation (35a) and the fact that band direction is kept constant along the deformation process, imply
that the equivalent nodal forces have to also evolve radially; hence,

t+∆tFsb = k tFsb (37)

therefore for a hardening material,

ΘT t+∆tFsb − ΘT tFsb
ΘT tFsb

=
t+∆tσy − tσy

tσy
=

tH
¡
t+∆tε̄ − tε̄

¢
tσy

=

tH ϕ
q

2
3 γ

tσy
(38)

where tH =
∂σy
∂ε̄ is the material hardening coefficient in the t−configuration.

For a bilinear material model, tH = (E ET ) / (E −ET ) [45]; where E is Young’s modulus and ET is the
tangential plastic modulus.
From Eqn.(38) we get, for the nodal forces generated by the shear band localization modes, the evolution

equation:

ΘT t+∆tFsb = Θ
T tFsb

⎛⎝1 + tH ϕ
q

2
3 γ

tσy

⎞⎠ . (39)

If the shear band opens at the τ−configuration, we have as initial condition for Eqn.(39),

ΘT τFsb = Θ
T τF = ΘT

Z
V

BT τσ dv (40)

Since we have discussed above that there is no localization for hardening materials, Eqn.(39) is only valid
for tET 0 0. For perfectly plastic materials we get, ΘT t+∆tFsb = Θ

T tF.
Using Eqns.(30) and (39) in (27) and solving for δU and δγ we get
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δUT

⎛⎝Z
V

BT t
h
CEP

i
B (U− γΘ) dv +

Z
V

BT tσcont dv −
Z
S

HT t+∆tp ds

⎞⎠ = 0

δγ

⎛⎝Z
V

−ΘTBT
³
tσcont +

t
h
CEP

i
B (U− γΘ)

´
dv + ΘT t+∆tFsb

⎞⎠ = 0

Since δU and δγ are arbitrary we get,⎡⎢⎢⎣
tKu −tKu Θ

−ΘT tKu ΘT tKu Θ+Θ
T tFsb

µ
tH ϕ

√
2
3

tσy

¶
⎤⎥⎥⎦
⎡⎣U
γ

⎤⎦ =
⎡⎣ t+∆tR− tF

ΘT (tF− tFsb)

⎤⎦ (41)

where,

tKu =

Z
V

BT t
h
CEP

i
B dv

t+∆tR =

Z
S

HT t+∆tp ds

tF =

Z
V

BT tσ dv

Since the above equations correspond to the linearized step we have to iterate for solving the incremental
step; using Newton iterations we get for the n− th iteration,

⎡⎢⎢⎣
t+∆tK(n−1)

u −t+∆tK(n−1)
u Θ

−ΘT t+∆tK(n−1)
u ΘT t+∆tK(n−1)

u Θ+ΘT tF
(n−1)
sb

µ
tH ϕ

√
2
3

tσy

¶
⎤⎥⎥⎦
⎡⎣∆U(n)

∆γ(n)

⎤⎦ =
⎡⎢⎣

t+∆tR− t+∆tF(n−1)

ΘT
³
t+∆tF(n−1) −t+∆t F(n−1)sb

´
⎤⎥⎦ (42)

where,

t+∆tK(n−1)
u =

Z
V

BT t+∆t
h
CEP

i(n−1)
B dv

U(n) = U(n−1) +∆U(n)£
t+∆tγ

¤(n)
=

£
t+∆tγ

¤(n−1)
+ ∆γ(n)

The parameter ∆γ is condensed at the element level and the resulting stiffness matrix is symmetric. It is
important to highlight that the new formulation does not increment the number of d.o.f. as compared with
the standard formulations; however, it requires a larger calculation effort.
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4 Numerical implementation and some verification problems

4.1 Numerical implementation

For the implementation of our formulation we use several heuristic rules that we developed from our numerical
experimentation:

• To detect the triggering of localization at an element, aside from tracking the plastic evolution at the
standard Gauss points used to model the continuum response, we also track the plastic evolution at
the element center. If at that point incremental plasticity is detected during a step iteration process
[9], the band displacement mode is added to the element, i.e. localization is activated. As this mode
is condensable, only the elements where localization was detected are affected by the formulation and
the element band parameters γ are calculated via element decondensation.

• At every step all bands are deactivated and are afterwards activated during the iteration process if
the localization condition is fulfilled. Since the bands are modeled using a rigid-plastic model, only
growing bands will be active and the unloading of previously localized elements will be modeled by the
continuous scale. If during a step iteration process, an element with an active band displacement mode
does not develop incremental plasticity, the localization mode does not evolve at that time step (γ = 0
and the tangent stiffness matrix does not incorporate the localization mechanism); hence, t+∆tγ = tγ.

• If during the iterations corresponding to an incremental step, an element alternatively develops incre-
mental plasticity without localization (condition for localization mode activation) and does not develop
incremental plasticity when the localization mode is activated (condition for localization mode deac-
tivation) the algorithm cannot decide this bifurcation condition. To settle this decision, if this occurs
more than a number of times during a step, the element is enforced to remain with the localization mode
inactive, taking the non-localized branch of the bifurcation. Typical limiting values are for example
8− 10 activating-deactivating cycles.

• Band directions are determined according to the acoustic tensor conditions (9, 10) and are kept constant
throughout the analysis. At this stage we have to select between two alternative directions and this
is, as far as we know, a point still open in the literature. Following [39] for the first shear band that is
triggered in the model we select one of the two directions and for the other ones we use a “persistence
criterion”, which means that in any new band we choose from the two possible directions, the one
closer to the localization direction in the surrounding elements.

4.2 Verification problems: elastic / perfectly plastic material model

To test the new formulation we develop simple bidimensional test cases using J2 plasticity. In the following
examples we consider a material with E = 200GPa, ν = 0.3, tσy = 600MPa, and a tangent plastic modulus
ET = 0.
In particular we analyze problems were the shear bands can fully develop and almost all the deformation

energy concentrates in the band. We observe the behavior of the energy dissipated at the continuum scale,
which is expected to decrease when the mesh is refined, and of the energy dissipated at the shear band scale,
which is expected to converge when the mesh is refined.
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4.2.1 Simple traction of a rectangular sheet

The problem under analysis is represented in Fig. 10. The first localization is induced by a reduction of 50%
in the yield stress of the corner element.
We analyzed plane stress and strain cases using the following regular meshes:

Mesh Horizontal Elem. Vertical Elem. Total Elem.
1 8 12 96
2 16 24 384
3 32 48 1536

Table II. Regular meshes used to analyze the simple traction of a rectangular sheet

In Figs. 11-12 we present the convergence studies for plane stress and plane strain conditions using
undistorted elements. In those figures we show: the resulting load-displacement diagrams which display
an excellent convergence when the mesh is refined without showing any mesh dependency; the total dissi-
pated energy which remains almost unchanged with mesh refinement; the plastic energy dissipated by the
continuum, which as expected decreases when the mesh is refined and the plastic energy dissipated by the
localization modes, which as expected increases when the mesh is refined.
In Fig. 13 (plane stress) and Fig. 14 (plane strain) for the (16×24) mesh we compare the results obtained

using undistorted and distorted elements. The results are quite independent of the mesh and we can only
comment that the band width increases slightly and the band equivalent plastic strain distribution is slightly
more diffused for the distorted mesh that for the undistorted one.
In order to visualize the difference between using standard element formulations and our new formulation

enhanced with localization modes, in Figs. 15 to 17 we present some comparisons for the plane strain case
at the step of maximum elongation.
In Fig. 15 we see that the high plastic deformations area in the continuum is much more extended

when using the standard finite element formulations. In the best case (QMITC formulation) the plastic
deformation is constrained to the size of one element.
In Fig. 16 we see the total equivalent plastic strain distribution for the different formulations. In the

models that were developed using the standard Q1-P0 and Q2-P1 elements the shear band is not properly
localized; in the model developed using the standard QMITC element the shear band localizes in one element
but as the mesh is refined the value of the total equivalent plastic strain grows unbounded. In the case of
our new formulation the equivalent plastic strain is localized in two small areas enclosing the band and does
not present an unbounded growth with mesh refinement.
In Fig. 17 we analyze the relative lateral displacement between points A and B. We see that the standard

formulations wrongly predict a vanishing horizontal displacement when the mesh is refined, while in the
formulation enhanced with localization modes the horizontal displacement prediction converges fast to the
definitive value and is not affected by the mesh refinement.
A similar problem was analyzed in [48] using a Cosserat continuum model and the results show “reduced

mesh sensitivity”. The Cosserat model includes a softening plastic behavior and other additional material
parameters.

4.2.2 Simple shear

To analyze the behavior of our new formulation in varying mesh orientation cases, we test two square meshes
of (9× 9) elements in the two shear cases shown in Fig. 18: case (a) with shear bands developing diagonal
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to the mesh and case (b) with shear bands developing aligned to the mesh. Localization is induced by a 50%
yield stress reduction at the central element. The comparisons between the standard QMITC formulation
and the QMITC enhanced with localization modes are shown in Figs. 19 and 20. In the case of the new
formulation, the results obtained for the "aligned" case are better than the results obtained for the "diagonal"
case. This worst behavior in the "diagonal case" may be attributed to the boundary effect at the corners,
where the restrains prevent the development of the localization scale.

4.2.3 Indentation of a plane strain specimen

In Fig. 21 we present the results that we obtained when analyzing the indentation of a plane strain specimen
using a 384 elements mesh; it is obvious that the energy is mostly dissipated by the localization modes. It
can be seen that close to the band initiation point, the continuum has a significant plastic deformation, while
along the band path almost all the plastic deformation is developed in the band, leaving the continuum scale
plastically unstrained.
In Fig. 22 we present a convergence study for this problem where it is seen that the numerical results

converge as we refine the mesh.

4.3 Verification problems: softening material model

Even though we do not use softening material models to simulate the structural softening, in the literature
many researchers resort to this type of material models. In this example we show that in these cases our
formulation is also able to provide mesh independent results.
Let us consider a material with ET = −E/102; that is to say a material with a softening plastic behavior.

We also use E = 200GPa, ν = 0.3 and oσy = 600MPa.
In Fig. 23 we present, for the simple traction of a plane strain rectangular sheet, the results obtained

using the standard QMITC element formulation and the element enhanced with localization modes. As
expected the standard formulation provides a very mesh dependent post-yielding result; however, the result
produced by our new formulation is quite mesh independent.

5 Conclusions
In this paper we developed a new two-scale finite element formulation for modeling J2 plastic deformation
processes in which shear band localizations take place (2D).
The new formulation is based on the use of embedded strong discontinuity modes which are triggered

using a stress based criterion. The basic finite element formulation, i.e. the QMITC element, that is enhanced
with the embedded localization modes, was selected so as to prevent a spurious diffusion of the localized
plastic deformations.
Considering the actual implementation of our new formulation it is important to point out that the order

of the Gauss integration used for calculating the element stiffness and equivalent nodal forces equals the
integration order used in standard finite element formulations and that the our two-scale formulation does
not introduce extra d.o.f. in the assembled numerical model.
There are several advantages in our new formulation:
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• It does not require the definition of non-physical strain softening stress/strain relations and does not use
material properties like fracture energy, which have not been defined nor measured in the environment
of J2 plasticity.

• It does not require a specific mesh refinement to model the localization phenomena.

• It provides mesh independent results even if a softening stress/strain relation is used.

• Its results are quite insensitive to element distortions.

Acknowledgement 1 We gratefully acknowledge the support of TENARIS for this research.
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A Quadrilateral elements: volume variation

The Jacobian for an isoparametric transformation is:

J =

∙
∂x
∂r

∂y
∂r

∂x
∂s

∂y
∂s

¸
; J−1 =

∙ ∂r
∂x

∂s
∂x

∂r
∂y

∂s
∂y

¸
=

1

|J |

∙
∂y
∂s −∂y

∂r

−∂x
∂s

∂x
∂r

¸
(A.1)

The volume change is:

∆V =

1Z
−1

1Z
−1

εv |J | dr ds =
1Z
−1

1Z
−1

µ
∂u

∂x
+

∂v

∂y

¶
|J | dr ds =

1Z
−1

1Z
−1

µ
∂u

∂r

∂r

∂x
+

∂u

∂s

∂s

∂x
+

∂v

∂r

∂r

∂y
+

∂v

∂s

∂s

∂y

¶
|J | dr ds (A.2)

Replacing A.1 into A.2

∆V =

1Z
−1

1Z
−1

µ
∂u

∂r

1

|J |
∂y

∂s
− ∂u

∂s

1

|J |
∂y

∂r
− ∂v

∂r

1

|J |
∂x

∂s
+

∂v

∂s

1

|J |
∂x

∂r

¶
|J | dr ds

∆V =

1Z
−1

1Z
−1

µ
∂u

∂r

∂y

∂s
− ∂u

∂s

∂y

∂r
− ∂v

∂r

∂x

∂s
+

∂v

∂s

∂x

∂r

¶
dr ds

Simplifying

∆V =

1Z
−1

1Z
−1

¡
hk,r uk hj,s yj − hk,s uk hj,r yj − hk,r vk hj,s xj + hk,s vk hj,r xj

¢
dr ds j, k = 1..4

As all the terms have a product hk,r hj,s ∀j, k, the polynomial terms will be of order 1, r, s and rs. All
those terms are exactly integrated using a one point Gauss quadrature; hence,

∆V = 4 εv|r=0 s=0 |J |r=0 s=0
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Figure Captions:

1. Plane strain problem modeled using different finite element formulations

2. Shear band in the coupling of a threaded connection: QMITC results

3. Shear band in the coupling of a threaded connection: etched sample

4. Strategies for modeling localization phenomena

5. Vectors tm and tn defined for the shear band (mode II)

6. Volume change for a square element: zero for a sliding line parallel to the element sides and non-zero
for a slanted sliding line

7. Eigenmodes that form the “shear base” (in solid lines we show the undistorted 2 × 2 element and in
dotted lines the deformed element)

8. Solid with localized shear band

9. Equilibrium of a solid with a localization line

10. Rectangular sheet in simple traction

11. Rectangular sheet in simple traction - Plane stress. Convergence studies

12. Rectangular sheet in simple traction - Plane strain. Convergence studies

13. Rectangular sheet in simple tension - Plane stress. Effect of elements distortion

14. Rectangular sheet in simple tension - Plane strain. Effect of elements distortion

15. Comparison between the new formulation and standard element formulations. Continuum equivalent
plastic deformation in plane strain

16. Comparison between the new formulation and standard element formulations. Continuum equivalent
plastic strain in a section normal to the shear band

17. Comparison between the new formulation and standard element formulations. Relative horizontal
displacement between points A and B

18. Shear cases analyzed

19. Localization in simple shear using the standard QMITC element and the QMITC element enhanced
with localization modes

20. Energy dissipation in simple shear. QMITC element vs. QMITC element enhanced with localization
modes

21. Indentation of a plane strain specimen: displacements and plastic strains

22. Indentation of a plane strain specimen: convergence analysis
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23. Softening material model. Plane strain rectangular sheet in simple traction
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