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Abstract-An algorithm for the automatic incremental solution of nonlinear finite element equations in 
static analysis is presented. The procedure is designed to calculate the pre- and post-buckling/collapse 
response of general structures. Also, eigensolutions for calculating the linearized buckling response are 
discussed. The algorithms have been implemented and various experiences with the techniques are given. 

1. INTRODUCTION 

The nonlinear finite element analysis of structures 
requires the use of accurate and reliable finite element 
models and, of equal importance, the use of efficient 
procedures for the solution of the incremental equa- 
tions of motion. The equation solution procedures 
are efficient when, for a given solution accuracy, the 
computer cost of solution is low and the solution is 
obtained in a reliable manner with a minimum 
amount of effort by the analyst. 

Since the need for nonlinear analysis of structures 
has significantly increased during the recent years and 
will continue to do so, and since ever more complex 
problems are being tackled, much emphasis is cur- 
rently being placed on the development of more 
general and automatic solution schemes. 

The objective in this paper is to describe an algo- 
rithm that we have studied for a more automatic 
solution of the finite element nonlinear equations of 
motion. We assume in this paper that an appropriate 
finite element representation to idealize the physical 
problem has been selected and we are only concerned 
with the solution of the governing equations. Using 
the notation of Ref. [l], these equations are 

I+AIR_I+A~F=o 
(1) 

where ‘+A’R is a vector of externally applied nodal 
point loads, and ‘+“F is a vector of nodal point 
forces equivalent (in the virtual work sense) to the 
internal element stresses, both being evaluated at time 
t + At. 

In this paper we consider only the static response 
of structures. Hence, if for the finite elements time 
independent constitutive relations are employed, the 
time variable is merely denoting a load level. How- 
ever, the time steps have to be chosen judiciously 
when the material law is time-dependent, as in the 
analysis of creep problems. 

The usual incremental solution of eqn (1) results in 
the following iterative scheme ([I], p. 490), 

‘K0 - I)AUIII = ,+ A!R _ I + A’FII- II 
(2) 

where ‘K”-‘) is a coefficient matrix and AU’” is an 
increment to the current displacement vector, 

I + AwIn = I + Aru” - I) + AU”’ (3) 

The coefficient matrix 'K@- ‘) is different in the various 
procedures used. In the full Newton-Raphson tech- 
nique and the BFGS method, the matrix is updated 
in every iteration, whereas in a modified Newton 
iteration, the matrix is only updated at certain times. 
Line searches can also be effective using each of these 
methods, and it is clearly possible to combine 
Newton and quasi-Newton iterations and line 
searches in one step-by-step solution scheme. 

A study of the advantages and disadvantages of 
various solution procedures was reported in [2]. 
However, in that earlier work two major assumptions 
were made. First, we assumed that the analyst pre- 
scribes the various load levels for which the equi- 
librium configurations are to be calculated. This can 
be difficult without an approximate knowledge of the 
load carrying capacity of the structure. Second, we 
assumed that only the response up to the collapse of 
the structure was sought; i.e. the post-collapse re- 
sponse was not required. However, in some analyses 
the response after the (or a) critical point has been 
reached is of interest. By critical point we refer to a 
bifurcation point or limit (collapse) point. 

In this paper we address the above two issues and 
describe an algorithm that we have implemented and 
studied to automatically choose appropriate load 
steps and calculate the pre- and post-collapse re- 
sponse of a structure. In the next section we present 
this algorithm which traces out the complete equi- 
librium path of the structure. For some classes of 
problems, to only estimate the collapse load, it can be 
effective to perform a linearized buckling analysis and 
in Section 3 we briefly discuss the solution of such 
problems. Some valuable experiences obtained with 
the solution techniques in the analyses of various 
problems are presented in Section 4, and in Section 
5 we briefly conclude with some thoughts towards a 
further refinement of the automatic solution strate- 
gies. 

2. INCREMENTAL SOLUTION ALGORITHM 
In the analysis we assume that the structure is 

subjected to a proportionally varying load. In this 
case the basic equations to be solved are, based on 
eqn (2). 

rKAU(O=‘+A’~R_‘+A’F(i~I) (4) 
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where ’ + “2 is a load factor that describes the in- 
tensity of the reference load vector R to be applied at 
time t + At. The difficulty lies in defining the load 
factor for each load step At, 2At, prior to the 
incremental analysis. Without sufficient knowledge of 
the structural behavior, the analyst may prescribe too 
small increments in load, making the solution unduly 
expensive, or load increments that are too large, 
resulting in convergence difficulties during the equi- 
librium iterations. Also, the most effective solution- 
measured on the required computational effort-is 
obtained when variable load step sizes are used. 
Frequently, it is of significant advantage to employ 
large load steps initially and smaller load steps as the 
collapse load is approached. Then, after the peak 
load has been traversed, the load level must be 
decreased appropriately to solve for the post-collapse 
response. 

Since our primary emphasis in the development of 
the algorithm was so far the automatic selection of 
the load increments. the algorithm uses eqn (4) in a 
modified Newton iteration only, in which the stiffness 
matrix is updated at any stage of the solution when 
the convergence is slow. However, it is realized that 
a full Newton iteration, a quasi-Newton iteration and 
line searches may increase the overall effectiveness of 
the solution technique. 

2.1 Loud constraints 
The essence of the automatic algorithm that we 

have studied lies in the automatic selection of the 
incremental load levels, and the iteration with the 
load level and the displacements. The basic idea of 
iterating in the load-displacement space was re- 
searched earlier by a number of investigators, see e.g. 
Refs. [3-l I]. 

When the iteration is performed in the load- 
displacement space, eqn (4) is used in the form 

‘K AU~I)=(~+A~~I~-I)+A~(II)R_~+AIFII-I) 
(3 

and an additional equation is employed to constrain 
the length of the load step 

f(Ai”‘. AU”‘) = 0. (6) 

Several constraint equations of this form have been 
proposed such as the tangent constant arc-length[3] 
and the spherical constant arc-length 
techniques[5, 71. 

In our research we found that for an automatic 
algorithm it is effective to use two different con- 
straints depending on the response and load level 
considered; namely, the spherical constant arc-length 
and a constant increment of external work. 

We use the spherical constant arc-length in the 
response regions far from the critical points, and in 
this case eqn (6) is 

I( 
, r+Ar~(,-11_1 

A) + A1’“}2 + U(I)’ U”’ = Al’ (7) 

U”’ = I + Aru”’ _ ‘u 

where A.I is the arc-length. 

t(la(/ denotes the Euchdlan norm of the vector a[l]. 

The scheme of constant increment of external work 
is used near the critical points. In this case eqn (6) is 
for the first iteration, 

(‘1 + ; AA(” AU”’ = w 

and for the next iterations, 

@a) 

( ,+Afi(lm 1) + f A~l”)Rr AU”’ = 0 (gb) 

where W is the amount of external work in the step 
(and is positive or negative). 

2.2 Iterations within a load step 
Prior to the start of the incremental solution. the 

analyst specifies three items. 
(1) The user inputs the reference load distribution, 

which corresponds to the vector R in eqn (5). This 
load distribution is varied proportionally during the 
analysis, but can be due to distributed and concen- 
trated loads. 

(2) The user specifies the displacement at a node 
corresponding to the first load level (i.e. correspond- 
ing to “1). We denote this displacement as *‘U:. Here 
it is deemed that to start the incremental solution it 
is easier to specify the displacement at a node, that 
the user selects, than the intensity (“‘A) of the loads. 

(3) The displacements corresponding to time Ar 
determined by the specified displacement A’Uf also 
limit the size of any subsequent load change per step, 
because the user specifies a constant CI and the 
algorithm assures that 

IlUll 5 m llAUllt (9) 

where U is the displacement increment in any load 
step and “U are the displacements corresponding to 
time At. 

2.2.1 Solution for the equilibrium configuration at 
time At with prescribed displacement “Uf. For this 
first load step, eqn (5) reduces to 

OK AUK = (Arab II + AAW)R _ A~FII II 
(10) 

with 

Ari(O) = 0; ApO) = 0. 
(11) 

The solution is obtained using the scheme discussed 
in [6]. For i = 1. we use 

OK AU”‘=R (12) 

Ar~ll) _ A’u: 

A Vk”’ ’ 
AIU(I) = Ark AU”‘, (13) 

Then for i = 2,3,. we use two equations instead of 
eqn (lo), 

OK AD(I) = Al]“0 - I J R _ .+-(I 1) (14) 

OR A@’ = AA(J) R (15) 

where we note that A@ = Al’” AU”‘. Since the dis- 
placement at degree of freedom k is imposed we have 
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the condition 

(16) 

and then 

Ark’d = ACJ’I - I) + AA”’ (17) 

Aq,~‘fi = 4rU’f - 1) + AU”) 

(18) 
AU’” = Au’” + AA”’ AU”’ 

Convergence of the iteration is reached when[l, 21 

where ETOL is an energy convergence tolerance. 
2.2.2 Solutions for the equilibrium configurations at 

times 2At, 3At, 4At,. . . , using the spherical constant 
arc-length algorithm. At the beginning of each such 
solution we calculate the load-step length AI, 

where 

A/=/?,/U’v+n’ (20) 

and the constant fl scales the previous load step 
length to an appropriate current load step length as 
discussed in eqns (30) and (31) 

Using eqn (5) we now obtain for iteration i = 1, 

and 

‘K Au(‘) = ‘1 R - I? (21) 

‘K A@’ = R (22) 

AU’” = AU”‘+ AA”’ Afi’i, 

(23) 
‘+Aq~‘l) = U + AU”‘; t+A’l’l, = ‘;1 + A,I”’ 

where the load increment A,%“’ is determined from the 
current load step length, i.e. eqn (7) 

AU”” AU”’ + (AR”‘)2 = A/*. (24) 

For iterations i = 2,3, . . . we use the solution of 
eqn (22), and in addition we solve 

~K~fT(‘)=‘+A’~(‘~I)R_‘+A’~1~l) 
(25) 

so that 

f + AJU’I? = I+ Afu’r - 1) + Au’” + Al”’ &’ (26) 

Equation (7) now yields AR’“, and we then have 

I+Ar~(O=r+Ar~‘l~l,+A~(l~. 
(27) 

Convergence in the iteration is measured as in eqn 
(19) 

AU’“T(‘+A’;1”-1’R _ t+ArFf’-I)) 

AU”‘T (AA”’ R) 
I ETOL. (28) 

We note that AI”? is obtained from a quadratic 
equation, so that different situations can arise. 

(a) We do not obtain any real roots. In this case 
we restart from the last established equilibrium posi- 
tion using the constant increment of external work 
algorithm (see Section 2.2.3). 

(b) We obtain two real roots. In this case we use 
the root for which y is largest[7]. where 

y = U” 117 U”‘. (29) 

Once a new equilibrium configuration has been 
determined, we check whether the condition in eqn 
(9) is satisfied. If eqn (9) is not satisfied we restart 
from the previous equilibrium configuration using 

A$ew = A$,, 
Ilull allowable 

Ilull . (30) 
aCtlId 

If eqn (9) is satisfied, we proceed with the solution for 
the next load increment using 

(31) 

where N, is the optimum number of iterations and N, 
is the number of iterations that were used in the 
previous load step increment. 

We found the above scheme to be effective as long 
as the solution is not too close to a critical point, at 
which time it is more efficient to use the scheme of 
constant increment of external work. The measure 
used to decide whether to switch from the constant 
arc-length to the constant increment of external work 
scheme is the value of iW/‘PA’W. When this value is 
close to unity, i.e. when 1 - 6 5 I’W/‘-A’WI < 1 + 6 
where 6 is small, the algorithm uses the constant 
increment of external work scheme. 

2.2.3 Solutions for the equilibrium configurations at 
times 2At, 3At, 4At,. . . , using the constant increment 
of external work algorithm. At the beginning of each 
step we calculate 

r+Arw = (1’ tw (32) 

where ’ W corresponds to eqn (8a) and p’ is a constant 
which we set equal to ‘J_/‘- “i. 

The iteration is now performed as for the scheme 
using the spherical constant arc-length (see Section 
2.2.2) but with eqns (8a) and (Sb) to determine the 
increments Ai’“. 

For the first iteration we use eqns (21)-(23) and eqn 

@a). 
For iterations i = 2,3,4, . . . we use eqns (22), 

(25)(27) and (8b), and convergence is measured by 
eqn (28). 

In these iterations we always obtain two real roots 
for Al(‘) when i = 2 3 
Al(“provided’+A’ “‘* 

; and the same holds for 
w’is small enough and equilibrium 

was sufficiently well satisfied at the end of the pre- 
vious load step. 

2.2.4 Some general remarks. Considering the iter- 
ative schemes described in the previous sections we 
note that the coefficient matrix is not necessarily 
positive definite. If the matrix is not positive definite 
a critical point has been passed, but the triangular 
factorization can be completed, provided there is no 
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multiplier growth. In practice, the triangular fac- 
torization only fails if it is attempted at, or very close 
to, a critical point-a situation that is hardly ob- 
served. 

Once a critical point has been passed an appropri- 
ate solution for Al’” may be a negative value, and 
such value is used if the coefficient matrix is not 
positive definite. 

We also note that a number of constants have to 
be selected and initialized for the algorithm; namely 
a, 6 and N,. Reasonable values for S and N, are 0.15 
and 6. respectively, but effective values for a are 
problem-dependent and in the solutions reported 
upon in Section 4 we used tl from 2 to 50. If the 
prescribed displa~ment “U,* is small, a large value 
of a may be appropriate. In addition more appropri- 
ate values for /I’ in eqn (32) can perhaps be selected. 
The proper choice of these constants does affect the 
performance of the solution algorithm, but more 
experience need be gained before more specific rec- 
ommendations can be made. 

3. LINEARIZED BIJCRLING ANALYSIS 

The automatic solution procedure presented in 
Section 2 calculates incrementally the complete solu- 
tion path, including the post-collapse response. The 
method is quite general but, although effective, can 
still lead to a relatively high solution cost, because an 
inurements solution is performed. In some analyses 
for which the pre-collapse displacements are negli- 
gible it is valuable to calculate only an estimate of the 
buckling load of the structure, without going through 
a solution for the complete nonlinear response. This 
may for some structures be achieved economically by 
a linearized buckling analysis. 

Let t decide the load level at which buckling or 
collapse would occur in an incremental analysis, then 
we have 

det ('K)=O (33) 

In the linearized buckling analysis we assume that 

‘K=:‘-A’K+A(‘K-‘-AK) (34) 

where t-A'R+l('R-'-A'R) is an approxi- 
mation to the buckling load. The relation in eqn (34) 
can be applied at any time At, 2At, 3At,. , . , but 
clearly assumes that from time t -At onwards the 
linear strain and nonlinear strain stiffness matrices 
change proportionally with additional load in- 
crements. This is a severe assumption and may lead 
to greatly overestimating the buckling load. Hence, 
the results of a linearized buckling analysis must be 
interpreted with great care1 1, 121. 

Considering eqns (33) and (34) we obtain the 
eigenproblem 

‘-A’K#=, AK4 (35) 

where AK = I - *X - 'K and AK is in general 
indefinite. Hence, in general, the problem in eqn (35) 
has negative and positive eigenvalues. 

Another eigenproblem for calculating the buckling 
load is reached by writing eqn (35) in the form 

AKc$=x'-~'K~, (36) 

where x = 112 and -assuming that we require the 
smallest positive eigenvalue of eqn (39, which we call 
+-we now want to calculate the largest positive 
eigenvalue of eqn (36). Hence we can impose a shift 
p = 1 .O onto the problem in eqn (36) and consider the 
eigenproblem 

K 4 = Is 1. A’K # (37) 

where now all eigenvalues y, are positive and we seek 
the smallest positive eigenvalue y,. The critical load 
factor is given by 

The effectiveness of using eqns (3.5) or (37) lies tn 
that we do not calculate linear and nonlinear strain 
stiffness matrices separately (on the element and total 
assemblage levels) but instead we use the usual 
tangent stiffness matrices in the eigensolution. There- 
fore, no special pro~amming is required to obtain 
the matrices for the linearized buckling analysis. 

Considering eqns (35) and (37) it appears that eqn 
(37) is employed most effectively, because AK does 
not need to be formed and all eigenvalues are posi- 
tive. However, in practice we find thatdepending 
on the structure and load level considered-the eigen- 
values yt of eqn (37) can be very closely spaced. 
Hence, convergence in the iterative solution using eqn 
(37) can be more difficult, and in that case eqn (3.5) 
is used more effectively. Also, if i, is large, y, is close 
to 1 .O and an error in y, can yield a large error in i, . 

4. SOME SAMPLE SOLUTIONS 

The algorithms described in the previous sections 
have been implemented in ADINA and we present 
in this section some of our experiences with the 
methods. 

For the analyses described in Sections 4.1-45, in 
each case, the first load step displacement was im- 
posed and then the algorithm calculated auto- 
matically the response for all subsequent load steps, 
as described in Section 2. 

In the analyses described below we deal with 
somewhat simple structures whose responses, how- 
ever, contain the important different features of 
complex analyses. We have not addressed yet the 
issue of obtaining most effective solutions measured 
on the numerical effort involved, and therefore do not 
report the actual computational efforts expended in 
the solutions. However, in no case of analysis was the 
computational expense much higher than when using 
prescribed, i.e. n priori given load levels to solve for 
the response. 

4.1 Ana&sis of simpie arch structure 
Figure I shows the two-bar structure considered 

and the solution obtained, when the structure was 
subjected to a compressive load (resulting in snap- 
through) and a tensile load. 

The performance of the automatic load stepping 
algorithm is interesting. We note that in the analysis 
of the snap-through, the algorithm switched with 
6 = 0.15 near the critical points automatically from 
the constant arc-length criterion to the constant 
external work criterion, and vice versa. On the other 
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Fig. 1. Analysis of a simple arch structure using updated Lagrangian formulation[l]. 

hand in the analysis of the stiffening problem, the 
constant arc-length criterion was employed through- 
out and the load-steps increased during the response 
calculations. 

4.2 Analysis of elastic-perfectly plastic thick-wailed 
cylinder 

Figure 2 shows the cylinder considered. This struc- 
ture was analysed earlier with prescribed load 
levels [2]. 

The response calculated with the automatic load 
stepping algorithm is shown in Fig. 2 and is com- 
pared with the solution reported in [13]. 

The difficulty of calculating the collapse load with 
prescribed load levels lies in that very small load 
increments near the ultimate load must be chosen- 
which for a complex structure in practice is not 
known-whereas the automatic load stepping algo- 
rithm computes the complete load-displacement re- 
sponse fully automatically. 

4.3 Large displacement analysis of cantilecer 
The cantilever analyzed already in Ref. [2] provides 

a simple but difficult test problem. 
Figure 3 shows the cantilever and the response 

calculated with the automatic load stepping algo- 
rithm. The total number of load steps now employed 
for the analysis-with a very tight convergence toler- 
ance (ETOL = lo-’ in eqn 28bwas 50 and a total 
of 446 modified Newton-Raphson equilibrium iter- 
ations were performed. This compares favorably with 
the solution effort reported in [2]. 

4.4 Collapse analysis of two elastic-perfectly plastic 
trusses 

Figures 4 and 5 show the two truss structures 
which were analyzed for their collapse loads. These 
structures were already studied earlier by Hodge and 
White[l4, 151, who had difficulties with the response 
solutions, illustrating that the materially-nonlinear- 
only formulation should not be used for this kind of 

CAS 17 - S/6 -Q 
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Fig. 2. Analysis of a thick-walled elastic perfectly plastic cylinder using materially-nonlinear-only or 
updated Lagrangian formulation. 

analysis. There is no difficulty with the response 
solution when the updated Lagrangian formulation is 
used[l]. 

Figures 4 and 5 show the calculated response with 
our automatic load stepping algorithm using the 
updated Lagrangian formulation. 

For comparison, we also calculated the response of 
the structures using prescribed load levels, and Table 
1 summarizes the calculated values for the larger truss 
structure. 

Note that in Figs. 4 and 5, the final slopes of the 
load-displacement curves are slightly positive (too 
small to be seen in the figures) because of the 

geometric stiffening effects in the models. Also, in the 
figures, P, and P,, correspond to the analytically 
calculated loads at first yield and collapse, re- 
spectively. The incremental solution yields of course 
only a set of discrete solution points which, in the 
figures, have simply been connected by straight lines 
(points A, B, C, D). 

4.5 Structure with snap-back characteristic 
The simple elastic truss structure shown in Fig. 6 

was analyzed in [9] using a displacement controlled 
method. Due to the snap-back characteristic, the 
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Fig. 3. Large displacement analysis of a cantilever using total Lagrangian formulation. 
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Fig. 4. Analysis of a triangular truss structure using updated Lagrangian formulation. 
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BC D 
4 

300- 

P 

Fig. 5. Analysis of a ‘J-bar truss structure using updated Fig. 6. Analysis of a structure with snap-back characteristic 
Lagrangian formulation. using updated Lagrangian formulation. 

displacement at node 1 could not be used as the 
controlling displacement. 

To use the automatic algorithm, an initial displace- 
ment was imposed at node 1 and from there on, the 
response was automatically traced. 

The solution results are given in Fig. 6 and are 
coincident with the solution obtained in [9]. 

P f c 0 AI 
4x I05 

Table 1. Results in analysis of 7-bar truss structure 

Step 

a 
9 

10 

11 

P/P, PIP,, Number of Iterations 
(BFGS) 

State at End of Step 

0.38 0.16 

0.82 0.34 

1.00 0.42 

1.18 0.49 

1.36 0.57 

1.54 0.64 

1.72 0.72 

1.90 0.79 

2.08 0.87 

2.26 0.94 

2.44 1.02 

1 totally elastic 
1 II II 

1 II II 

1 bars 1, 2 - plastic 

1 II II II II 

1 II ,I ,I ,I 

1 I, ,I II II 

1 II 0 I, I, 

1 ,I II II II 

1 ,I II II I/ 

4 bars 1, 2, 4, 5, 6, 7 plastic 

First analysis 

step P/P, P/P Number of Iterations 
Y 

State at End of Step 
(BFGS) 

1 1.00 

2 1.72 

3 2.44 

0.42 1 totally elastic 

0.72 1 bars 1. 2 - plastic 

1.02 4 bars 1, 2, 4, 5, 6, 7 plastic 

Second analysis 
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Fig. 7. Analysis of a circular ring under constant pressure. 

4.6 Linearized buckling analysis of a circular ring 
The circular ring shown in Fig. 7 was modeled 

using sixty 3-node isoparametric beam elements. The 
ring is subjected to external pressure, which is as- 
sumed not to change direction. 

The analytical buckling pressure for the ring is 
p,, = 0.7[16]. 

We used eqns (35) and (37) to estimate the value 
of pCr. Using 2 point Gauss integration we obtained 
the exact value, whereas with 3 point integration the 
estimated buckling load is 8.3% too high. 

5. CONCLUDING REMARKS 

The research and development reported in this 
paper represents some efforts towards more effective 
automatic incremental solution schemes for genera1 
nonlinear analysis. 

The linearized buckling analysis procedure is 
effective because the required matrices can be calcu- 
lated very economically, and the solution is then 
performed using either the subspace iteration method 
or the determinant search method[l]. 

The automatic load stepping algorithm has per- 
formed well in the solution of various problems- 
softening, stiffening, collapse and post-buckling anal- 
yses. However, improvements in this solution 
procedure should still be pursued in particular with 
regard to the use of full Newton iteration, the BFGS 
method and line searches in the overall solution 
strategy. Also, more experience with this algorithm 
will be valuable in order to confirm and possibly 
improve the use of the various tolerances and deci- 
sion making processes employed in the solution pro- 
cedure. 
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