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The finite element modelling of fracture problems in frictional materials is investigated. Displace- 
ment interpolated localization lines embedded in quadrilateral 2D elements based on mixed interpola- 
tion of tensorial components (QMITC) are used for the analyses. 

1. Introduction 

A reliable computational modelling of 2D fracture problems in frictional materials requires 
the following three ingredients: 

(i) A finite element formulation that in the pre-fracture regime provides reliable results. 
That is to say, a finite element formulation that satisfies the following requirements: 
-T h e  elements do not contain spurious zero-energy modes. 
-The  elements satisfy Irons' Patch Test. 
-The  predictive capability of the elements is high and relatively insensitive to element 

distortions and changes in material properties (e.g. in the case of elasto-plastic 
problems the elements must not lock in the fully plastic range) 

The quadrilateral 2D element QMITC developed in [1] satisfies the above requirements. 
(ii) A fracture formulation to be used with the above elements. This formulation has to 

assure a correct fracture energy dissipation when the mesh is refined (objectivity with 
regard to regular mesh refinement) and a correct fracture energy dissipation when the 
mesh is distorted (objectivity with regard to mesh distortion). 
The formulation of finite elements with displacement interpolated embedded localization 
lines developed in [2] satisfies the above requirements. 

(iii) An adequate constitutive relation for the pre-failure and ductile post-failure regimes, e.g. 
the constitutive relation for concrete developed in [3]. 

In this paper we concentrate on the first two ingredients, that is to say, we investigate the 

0045-7825/91/$03.50 © 1991 Elsevier Science Publishers B.V. All rights reserved 



830 E.N. Dvorkin, A.P. Assanelli, 2 D finite elements with localization lines 

performance of displacement interpolated localization lines embedded in QMITC elements for 
the analysis of fracture in frictional materials. 

2. The QMITC Element 

In the present section we summarize the formulation of the QMITC element. A detailed 
description of this element was presented in [1]. 

The 2D quadrilateral element QMITC is based on the method of mixed interpolation of 
tensorial components [4-6], hence we adopt a displacement interpolation and a strain 
interpolation and tie both interpolations together. 

To interpolate displacements we use the interpolation functions of a five node isoparametric 
element [7] (see Fig. l(a)). 

The strain tensor at any point inside the element can be written using covariant components 
and contravariant base vectors, 

__e = ~,./~;~/. (1) 

In the natural coordinate SYstem of an element, the covariant base vectors (g~) and the 
contravariant base vectors (g ' )  are defined as usual, and we use 

g,=g,l,=.,=o, i=I,2,3, g,'=g'l,=.,.=o, i=1,2,3. (2) 

To interpolate the strain field inside the element we use the following interpolation 
functions: 
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Fig. 1. Interpolations used in the QMITC element. (a) Displacement interpolation nodes. (b) Strain interpolation 
sample points. 
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For axisymmetric analysis, we interpolate the hoop strain using [8] 

-  ,,Ic ) s 
 ,,Io TM . o ,  . o ,  ^ o ,  o - e,,ln ) r + ~ (e,[A . (3d) 

In (3) we use the following notation: 
- TM 

Am.c.o.o are the covariant strain components at points A, B, C, D and O (see Fig. l(b)) 
directly evaluated from the displacement interpolation. 

- I  J01 is the determinant of the Jacobian at the element center. 
- IJI is the determinant of the Jacobian at a point of natural coordinates (r, s). 

The two displacements corresponding to node 5 in Fig. l(a) are condensed at the element 
level (see [1, Appendix II]). 

In [1] it was shown that the QMITC element presents the following distinct features: 
- I t  does not contain spurious zero-energy modes. 
- I t  satisfies Irons' Patch Test. 
- One rectangular element can exactly model a state of constant bending in plane stress. 
- T h e  predictive capability of the element is quite insensitive to element distortions. 

In [9] it was shown that the QMITC element provides accurate results in the fully plastic 
range (non-locking behavior) and it can therefore be used for the calculation of plastic limit 
loads. 

The stiffness matrix of the QMITC element is calculated using 2 × 2 Gauss numerical 
integration. 

3. Finite elements with displacement interpolated embedded localization lines 

3.1. Basic concepts 

It has been shown in the literature [10-15] that for modelling strain-softening situations 
(e.g. the behaviour of concrete when fracture' develops) in order to obtain objective results 
with regard to regular mesh refinement, the fracture energy has to be used as a material 
property to develop the stress-average strain constitutive relations. 

Following the above consideration, two main development routes, which are closely related 
[16], have been proposed for the modelling of fracture problems in frictional materials: 
- t h e  smeared crack approach [12, 13, 17], 
- t h e  discrete crack approach [11]. 

However other formulations aimed at modelling strain localization problems have been 
proposed and some of them are discussed in [2]. 

In [2] a new formulation was developed for modelling strain localization problems, this new 
formulation fulfils the following requirements: 
-Reta ins  the desirable features of the smeared crack approach, namely the ability to model 

the progression of strain localization zones without remeshing and, for fracture problems, 
the use of an energy criterion in order to obtain results objective with regard to regular mesh 
refinement. 

-Achieves  the additional capability of being objective with regard to mesh distortions thus 
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assuring a correct energy dissipation in fracture problems even when distorted meshes are 
used. 
The main aspects in this new formulation are 

- T h e  strain localization involves a complete element as the minimum information quantum 
[18-20], instead of working at the integration points level as is usual in most of the available 
techniques. 

- T h e  strain localization (fracture) inside an element is considered in the form of a displace- 
ment discontinuity line embedded in the element domain. 

- Once a localization line has been triggered in an element, two different constitutive relations 
are considered. First, a stress-displacement law for the discontinuity line, in the present case 
of fracture problems this law must be adjusted to the fracture energy value. Second, a 
conventional stress-strain law (hiperelasticity or hipoelas~:icity) for the element domain (see 
e.g. [3] for the case of concrete). 

- The resulting finite elements are nonconforming. Hence for a reliable analysis capability, the 
elements with the displacement interpolated embedded localization line must not contain 
zero-energy modes and must satisfy an ad hoc version of Irons' Patch Test. 
As shown in [2], these requirements are satisfied by the proposed formulation. 

3.2. The new formulation 

In this section we summarize the formulation of finite elements with displacement interpo- 
lated localization lines. A detailed description of this formulation was presented in [2]. 

We assume the solid shown in Fig. 2 in equilibrium at time (load level) t. At this time the 
localization (fracture) phenomenon has already been triggered and is modelled as a displace- 
ment discontinuity line. We seek the equilibrium configuration at time (load level) t + At. At 
this configuration the Principle of Virtual Work must be satisfied. Assuming a material 
nonlinear only analysis and using Bathe's notation [2, 7], 

fv, Bet '+'x'tr dVt + fv,. ~et t+atO" dV., dS, + f, '+"p, dS.. 

+ fa, But '+a'r, dA, + fa2 ,Bu' '+a'r 2 dA=. (4) 

In (4) e is the vector containing the Cartesian components of the incremental infinitesimal 
strain tensor, '+a'o. is the vector containing the Cartesian components of the Cauchy stress 
tensor at time t + At, and u is the vector containing the Cartesian components of the 
incremental displacements. 

For the other terms in (4), Fig. 2 is self-explanatory. 
We now introduce the finite element discretization. Prior to localization and when using the 

QMITC element, the incremental displacement and strain interpolations are the ones com- 
mented in Section 2. 

After localization is triggered based on a given criterion (see Section 3.3.1), and therefore a 
displacement discontinuity line is opened in a QMITC element (see Fig. 3), we introduce the 
vector ~¢ containing the components, in a local Cartesian system (2,, 22), of the rigid 
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Fig. 2. Solid with a localization line. (a) solid, (b) split solid. 

incremental displacement that takes V 2 away from VI (Fig. 3): 

Being R the matrix that rotates Cartesian vector components from the (~1, ~.,) system to the 
global Cartesian system, the resulting displacement interpolations for the left subdomain V t 
and for the right subdomain V 2 are 

u t = H ( U  - d p R ( . l ¢ ) ,  u z = H ( U  - d ~ R O  ~) + R U  ~ , (6) 

where U is the incremental nodal disl~lacements vector. 
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Fig. 3. Q M I T C  e lement  with an e m b e d d e d  localization line. 

In the above H is the standard interpolation matrix for a 5-node isoparametric element [7] 
and ~ is defined as 

~ = [ t b ,  ~., (~.~ d~4r. (7) 

Each of the submatrices ~ of dimension 2 x 2 depends on the position of node i relative to 
the localization line, according to the following rule: 

[0  when n o d e i ~ V  t, 
,t,, m~ / 1 when node i E  V,. 

A computational problem appears when within round-off tolerances a localization line 
passes through a node and the definition of ~; is ambiguous. For this case, in our implementa- 
tion we adopted the arbitrary criterion of using for the a angle in Fig. 3 a value of tz + Aa 
where Aa < <  t~ and is of arbitrary sign. 

For two neighbour points, one on the right and one on the left of the localization line, the 
incremental displacement discontinuity is given by 

u + - u - = R O  ~ . (8) 

Using the strain interpolation of (3), a strain-displacement matrix ~ is obtained, hence for 
any element point either on V, oz on V 2, 

^ ~  
e = ~ ( v -  6 R u  ) =  Ov ~" (9) 

Replacing in (4), and taking into account that GU and GO ~ are independent variations we 
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obtain the following two sets of equations (details of the derivation for a general element are 
given in [2]): 

fvBt '+A'o" dV= fsHts '+A'p dS , (lOa) 

f, _ R t,+at dS~  + ,+A,?dA.  Rt~t ~t t+Ato, dV=mRt~l t  A HtsA t+At d S  A ~ P2 

(10b) 

Equation (10a) is the standard set of global equilibrium equations. 
In [2], (10b) was worked out together with the additional condition of global equilibrium for 

each of the two parts into which the localization line subdivides the element, i.e., 

fs Rt '+a'p2dS2= fA '+a'°'°nA dA " (11) 
2 

where t+Atlor is a second order tensor, n A is a unit vector normal to the localization line and the 
dot indicates a scalar product. 

By properly defining a matrix ~ we c3n write 

'+a'__o.o na = ,  '+a'~r. (12) 

After some algebra and using (11) and (12), (10b) can be stated as 

fa tlt '+a'~dA = fa '+a'~dA . (13) 

Considering that 

'+ato' = 'o' + ,o ' ,  ,+al~ = I~+ ,# (14) 

and that the configuration at t fulfils equilibrium, (13) can be written in incremental form as 

fA qt ,crda = fA / d a .  (15) 

We now introduce the following constitutive relations: 
- For the material on both sides of the localization line, 

=,o + f, ,c d e ,  (16a) 

where ,C is the tangent constitutive matrix corresponding to a general material without 
fracture considerations (e.g. the elastoplastic material model developed in [3] for concrete). 

- F o r  the localization line, 

,+a,# = ,# + jr)f, ,~7' dU c . (16b) 



836 E.N. Dvorkin. A.P. Assanelli. 2D finite elements with localization lines 

As we stated above, in fracture problems the definition of (16b) has to assure a correct 
fracture energy dissipation (see Section 3.3.3). 

For the linearized step, 

[ f v ~ t  CB d V ] ( U -  dpRUC)= '+a'P- "F , (17a) 

C1 c = S,7,.t SvuV . (17b) 

In the above, 

'+'x'P=fsHts '+a'P dS , ' F = f v  

S'"' = fA (t~ ,CBd~R + ,CO) dA,  

/~t to, dV,  (18a,b) 

Svv = fA dJ ,CB dA  . (18c,d) 

P, eplacing with (17b) in (17a) we obtain 

ccSvv ) dV U = - 'F (19) 

The term between brackets on the left-hand side of (19) is the non-symmetric consistent 
tangent stiffness matrix. In [2] the computational efficiencies of several symmetric even though 
non-consistent stiffness matrices ( 'g)  were discussed. 

The final equilibrium configuration at t + At is obtained iterating 
- a t  the element level on (15) 
- at the model assembly level, when using load control [7], on the followhlg equations for the 

i-th iteration: 

'K 5 U  "1 = , , a , p  _ ,+aTI , -~ l l  ' (20a) 

U I~ = U C~-tl + AU "~ , U "~ = 0 .  (20b,c) 

The equilibrium configuration is obtained when a given convergence criterion is fulfilled 
(see [7, Chapter 81). 

For iterating in the load-displacement space, the iteration equations are given in [21]. 

3.3. Computational details 

In our computational implementation the following details are relevant: 

3.3.1. The Mode I fracture initiation criterion used for frictional materials (e.g. concrete) is 
shown in Fig. 4 and is discussed in [3]. When within an element the stress state is not constant, 
several ways of implementing the initiation criterion can be considered, e.g. the localization 
line can be opened either when at only one Gauss point the stress level reaches the failure 
surface or when the stress level at the element center reaches the failure surface or when the 
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Fig. 4. Fracture initiation criterion. 
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Fig. 5. Constitutive retation lk~r the localization line. 
(a) Linear model, (b) exponential model. 

stress levels at the four Gauss points reach the failure surface, etc. The third criterion is used 
in our implementation. 

3.3.2. Non-orthogonal cracks (localization lines) can be opened in an element [15, 22, 23]. 

3.3.3. For the localization lines a stress-displacement incremental constitutive relation corre,- 
sponding to Mode I blunt fracture is used: 

/2J ,GrJ[wd 
(21) 

where ,Er(t~c) is adjusted to a given fracture energy Gf (material property) and can be 
considered either a linear function or an exponential function (Fig. 5). In (21) ,G r is related to 
the instantaneous shear modulus via the well known 'shear retention factor' [3]. 
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3.3.4. When a localization line has been opened inside an element, for the i-th iteration in 
(20), the following calculations are performed at the element level: 

(i) k = 0" '+'~'fT¢(i~ = '(J¢ , "" (0) 
(ii) t+AtlTEP(i) t+ArU{i) t +AtFfc{i) 

~ ( k )  = - -  "~ (k) " 
(iii) Calculate the incremental displacement of the interior (condensed) node, solving the 

following equation: 

r EP(i) 
Kie 

rKEP(i )  l [ ' A I T  EP(i) ~ ei [ *"~" e(k) 

rgEP(i) / A l r  EP(i) 
-- ii L ,..~,L.,, i(k ) 

t+Ate(ei-I) ] 

(iv) 

(v) 

(vi) 

(vii) 

(see [1, Appendix II]), the subindex 'i ' refers to the interior (fifth) node and the subindex 
be" to the four exterior nodes and TKEP is given by the integral between brackets on the 
left-hand side of (17a). 
Calculate the element incremental stresses using (9) and (16a) (,o'((~)~) (For the integra- 
tion of the stress/strain relation details are given in [3]). 
Calculate the localization line incremental stresses using (16b) (,~I~)). 

"-" (k) = Sc~. t~  tortk~ t r (~)  . 

If (IAU~[)< TOL then convergence at the element level has been achieved, if not 

t+Atl~lc(i) t+,lt~lc(i) A ~ / c ( i )  
-- W ( k + l )  "~" '~' (k) de. ~ V ( k )  

- k = k + l  

- G o  to (ii). 

3.3.5. For elements where a localization line has been opened, the stress output is only 
relevant at the element center. 

4. Numerical examples 

In [1] and [9] the numerical experimentation showed that the QMITC element 
(1) converges, that is to say that it is stable and consistent; 
(2) provides efficient and accurate solutions for some linear and nonlinear benchmark 

problems. 
In [2] the numerical experimentation showed that the formulation of displacement interpo- 

lated embedded localization lines for problems involving fracturing of frictional materials 
(1) provides objective results with regard to regular mesh refinement; 
(2) provides objective results with regard to mesh distortions in constant stress problems. 

That is to say, in these problems the work of the external loads is correctly transformed into 
strain and fracture energy which is the physical idea behind Irons' Patch Test ([24, Chapter 
2]). Hence we can confirm, since our formulation does not present zero energy modes, that 
the new formulation is stable and consistent. 
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Since our purpose in the present paper is to investigate the ability of the formulation to 
describe the fracture of frictional materials and we are not concerned with the accuracy of our 
model in the pre-failure and ductile post-failure regimes [3]. we use a simple elastic-fracture 
constitutive model for our numerical examples. 

All the examples have been analyzed using the elastic stiffness matrix (symmetric) with a 
BFGS matrix updating technique [7]. In [2] this procedure was shown to be slightly less 
efficient than the procedure based on the symmetric part of the consistent stiffness matrix and 
a full Newton-Raphson iterative scheme, however the adopted iterative method seems to be 
more robust. 

4.1. Bending of a simply supported beam 

In Fig. 6 we show the results obtained using in undistorted and distorted meshes: 
- standard 4N elements (STD-4N) + embedded localization lines, 
- QMITC elements + embedded localization lines. 

From the plotted load-displacement curves that correspond to a linear softening it is clear 
that 
- t h e  results deterioration due to mesh distortion is higher when using STD-4N elements than 

when using QMITC elements. 
- t h e  STD-4N elements produce results that are too stiff. 

This problem was also examined in [2] and the conclusion there was that in order to achieve 

mesh A 
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0.0 Centrat Disptacement 0.12E-2 

Fig. 6. Bending of plane stress simply supported beam. 
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objectivity with regard to mesh distortions, it is necessary to use the formulation of 
displacement interpolated embedded localization lines coupled to an element that is also quite 
insensitive to mesh distortions: the QMITC element. 

4.2. Notched beam 

The problem shown in Fig. 7 was analyzed in [25] using the discrete crack approach and in 
[15] using the smeared crack approach. 

& 

E = 30000 N/mrn~ 
')=0.2 
f~=37 N/mmZ 

f1=3.33 N/mm z 

Gt=0.124 Nlmm 

Fig. 7a. Notched beam. Model. 
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Fig. 7b. Notched beam, Load-displacement  curves. 

I 

0,8 

& qrn i tc -exp 



E.N. Dvorkin, A.P. Assanelli, 2D finite elements with localization lines 

In Fig. 7 we show the results we obtained for linear and exponential softening using 
- STD-4N elements + embedded localization lines, 
- QMITC elements + embedded localization lines. 

It is apparent once again that the STD-4N elements produce results that are too stiff. 

841 

4.3. Deep beam under two point loading 

The experimental testing of this problem was reported in [26] and the conclusions were 
- t h e  beam failed by a diagonal tension mode (the fracture plane is indicated with a dotted 

line in Fig. 8); 
- there  was no significant fall in the load at the time of formation of the diagonal crack; 
- th e r e  was no crushing of the compression zone. 

In Fig. 8 we show the load-deflection curve and the fracture patterns for different load 
levels that we obtained with cur analysis technique using an expoliential softening. The finite 
element results present a close agreement with the experimental observations. For this case a 
realistic finite element solution was also reported in [27]. 
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Fig. 8(a). Deep beam under two point loading. Model. 
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Fig. 8. Deep beam under two point loading. (c) Crack pattern for P = 15 ton; (d) crack pattern for P = 20ton;  (e) 
crack pattern for P = 24 ton ( . . . .  closed crack); (f) crack pattern for P = 26 ton ( . . . .  closed crack). 
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5. Conclusions 

For a finite element formulation to be used as a reliable tool for engineering analysis the 
following requirements need to be satisfied: 
- T h e  formulation must not contain spurious zero-energy modes. 
- T h e  formulation must provide the 'exact solution' for constant stress problems which in the 

present context is equivalent to Irons' Patch Test. 
- T h e  formulation must be relatively insensitive to mesh distortions and changes in material 

properties. 
In [1,9] it was shown that the QMITC element satisfies the above requirements, while in [2] 

it was shown that the formulation of finite elements with displacement interpolated embedded 
localization lines also fulfils the reliability criteria and, in fracture problems, dissipates the 
correct energy. 

In the present paper we use displacement interpolated localization lines embedded in 
QMITC elements to analyze the fracture propagation in some concrete structures. 

The obtained results are very encouraging and allow us to consider the combined formula- 
tion (QMITC elements + displacement interpolated embedded localization lines) as an effec- 
tive and reliable engineering tool. 

Our next step will be to extend the present analysis procedure to the modelling of fracture 
propagation in metals and to the analysis of shear bands in metal forming processes. 
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