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ABSTRACT 
A new four-node (non-flat) general quadrilateral shell 
element for geometric and material non-linear analysis is 
presented. The element is formulated using three-
dimensional continuum mechanics theory and it is applic
able to the analysis of thin and thick shells. The for
mulation of the element and the solutions to various test 
and demonstrative example problems are presented and 
discussed. 

INTRODUCTION 
The finite element analysis of general shell structures has 
been a very active field of research for a large number of 
years14,29. However, despite the fact that many different 
shell elements have already been proposed, the search for 
a shell element capable of representing the general non
linear behaviour of shells with arbitrary geometry and 
loading conditions in an effective and reliable manner is 
still continuing very actively. 

During recent years it has become apparent that two 
approaches for the development of shell elements are very 
appropriate: (1) the use of simple elements, based on the 
discrete-Kirchhoff approach for the analysis of thin 
shells2,5-9; (2) the use of degenerated isoparametric 
elements in which fully three-dimensional stress and 
strain conditions are degenerated to shell 
behaviour2,3,5,7,17,19,24,29. 

The latter approach has the advantage of being inde
pendent of any particular shell theory, and this approach 
was used by Bathe and Bolourchi3 to formulate a general 
shell element for geometric and material non-linear 
analysis. This element has been employed very success
fully when used with 9 or, in particular, 16 nodes. 
However, the 16-node element is quite expensive, and 
although it is possible to use in some analyses only a few 
elements to represent the total structure (see later exa
mples) in other analyses still a fairly large number of 
elements need by employed5. 

Considering general shell analyses, much emphasis has 
been placed onto the development of a versatile, reliable 
and cost-effective 4-node shell element16'17,22,28. Such 
element would complement the above high-order 16-node 
element and may be more effective in certain analyses. The 
difficulties in the development of such element lie in that 
the element should be applicable in a reliable manner to 

thin and thick shells of arbitrary geometries for general 
non-linear analysis. 

The objective in this paper is to present a simple 4-node 
general shell element with the following properties: the 
element is formulated using three-dimensional stress and 
strain conditions without use of a shell theory; the 
element is applicable to thin and thick shells and can be 
employed to model arbitrary geometries; the element is 
applicable to the conditions of large displacements and 
rotations but small strains, and can be used effectively in 
materially non-linear analysis. 

The formulation of the element is quite simple and 
transparent, and the element has good predictive capa
bility without containing spurious zero energy modes. 

In the next section of the paper we discuss some basic 
considerations with respect to the assumptions used, and 
in the following section we present the element for
mulation for non-linear analysis. The results obtained in 
numerical solutions that demonstrate the properties of 
the element are given in the final section. 

BASIC CONSIDERATIONS 
The formulation of the 4-node shell element represents an 
extension of the shell element discussed previously2,3, and 
we therefore use the same notation as in those references. 
Also, to focus attention onto some key issues of the 
formulation, we consider in this section only linear 
analysis conditions. 

The geometry of the element (see Figure 1) is described 
using2: 
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where the hk(rl,r2) are the two-dimensional interpolation 
functions corresponding to node k; the ri are the natural 
coordinates; and 1xi = Cartesian coordinates of any point 
in the element; = Cartesian coordinates of nodal point 

:=components of director vector at node k (which 
is not necessarily normal to the midsurface of the 
element); and ak is the shell thickness at node k, measured 
along the vector The left superscript is zero for the 
initial geometry of the element and is equal to 1 for the 
deformed element geometry. Note that the thickness of 
the element varies and the element is in general non-flat. 

The displacements of any particle with natural coor
dinates ri of the shell element in the stationary Cartesian 
coordinate system are: 

where the are the nodal point displacements into the 
Cartesian coordinate directions, and the ak and Bk are the 
rotations of the director vector about the and 
axes (see Figure 1). 

A basic problem inherent in the use of the above 
interpolation of the displacements, and the derivation of 
the strain-displacement matrices therefrom, is that the 
element 'locks' when it is thin. This is due to the fact 
that with these interpolations the transverse shear strains 
cannot vanish at all points in the element, when it is 
subjected to a constant bending moment. Hence, al
though the basic continuum mechanics assumptions 
contain the Kirchhoff shell assumptions, the finite element 
discretization is not able to represent these assumptions 
rendering the element not applicable to the analysis of 
thin plates or shells2,5,7. To solve this deficiency, various 
remedies based on selective and reduced integration have 

been proposed17,22,23 but there is still much room for 
more effective and reliable elements for general non-linear 
analysis. 

Considering our element formulation - because the 
problem lies in the representation of the transverse shear 
strains - we proceed to not evaluate these shear strains 
from the displacements in (2), but to introduce 
separate interpolations for these strain components. Since 
we consider non-flat shell elements, the separate in
terpolations are performed effectively in a convected 
coordinate system†. 

The choice of the interpolation for the transverse shear 
strain components is the key assumption in our element 
formulation, because adequate coupling between the 
element displacements and rotations must be introduced 
and the element should not exhibit any spurious zero 
energy modes. For our element we use (see Figure 2): 

Since the kinematic relations for the above shear strains 
are not satisfied using (3), we impose them using 
Lagrange multipliers2,27 to obtain, 

where the are the contravariant components of the 
Cauchy stress tensor13,15, the are the covariant com
ponents of the infinitesimal strain tensor, the 
are the Lagrange multipliers, the are the 
transverse shear strains evaluated using the displacement 
interpolations in (2), and is the potential of the 
external loads. For the Lagrange multipliers we choose 
the following interpolations, 

where <5(...) is the Dirac-delta function. This represents a 
weakening of the Lagrange multiplier constraint in 
(4)10. Substituting from (5) into (4) and invoking 
that gives the distinct constrains: 

Hence, the complete element stiffness matrix is calculated 
using the functional: 

† Note that in refs. 2 and 3, the shell element formulation is discussed in 
the global stationary coordinate system, because all displacement 
components are interpolated in the same way. To emphasize that we use 
here stress and strain measures in the convected coordinate system, we 
place a tilde (~) over these quantities. 
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with stress and strain components in convected coor
dinates and (1) and (2) to evaluate the strain 
components (3) to evaluate the strain 
components ; and (6) to express the variables 

in terms of the nodal point displace
ments and rotations of (2). 

Considering the representation that we have chosen for 
the transverse shear strains, we can make the following 
three important observations: 

(1) The element is able to represent the six rigid body 
modes. The element contains the rigid body modes 
because zero strains are calculated in the formulation 
when the element nodal point displacements and rota
tions correspond to an element rigid body displacement. 
This can be verified by using (1) to (6) to evaluate 
the strains, but more easily we can use the fact that 
the 4-node shell element of reference 3 satisfies the rigid 
body mode criterion. Hence, for a rigid body displace
ment the are zero, from which it follows that 
also the shear strains in (3) are zero, and the rigid body 
mode criterion is satisfied. 

(2) The element can approximate the Kirchhoff-Love 
hypothesis of negligible shear deformation effects and can be 
used for thin shells. Various demonstrative solutions are 
given in the fourth section. 

(3) Based on our studies the element does not contain any 
spurious zero energy modes (using a 'full' numerical in
tegration). We reach this observation by studying the 
strains along the element sides. If the element were to 
contain a spurious zero energy mode, the strains along 
every side should vanish for a displacement pattern (to be 
identified) other than the displacements corresponding to 
a true rigid body mode. However, such displacement 
pattern could not be identified. 

Considering the practical use of the element the in
terpolation employed for the transverse shear strains 
shows that is constant with r1 and in general 
discontinuous at (between elements), and 
similarly is constant with r2 and in general discon
tinuous at As a consequence, the accuracy with 
which transverse shear stresses are predicted depends to a 
significant degree on the mesh used and the geometric 
distortions of the elements. However, our experience is 

that the bending stress predictions are relatively little 
affected by element distortions (see examples). 

To employ (7), we also need to use the appropriate 
constitutive relations: 

where is the fourth-order contravariant constitutive 
tensor in the convected coordinates ri. The constitutive 
law is known in the local Cartesian system of orthonormal 
base vectors i = 1,2,3, with the condition equal to 
zero2, (see Figure 3). Denoting this constitutive tensor by 

the constitutive tensor for (8) is obtained using 
the transformation: 

where the gi are the contravariant base vectors of the 
convected coordinates ri. These vectors are calculated, 
using the covariant base vectors gi, where: 

where Dij is the cofactor of the term gij in the matrix of the 
metric tensor and |J| is the determinant of the Jacobian 
matrix at the point considered. 

TOTAL LAGRANGIAN FORMULATION 

The large displacement formulation of the shell element is 
based on the derivation given in ref. 2 (Section 6.3.5), and 
the concepts and interpolations presented in the previous 
section. 

The geometry of the element at any time t is defined as 
in (1) but using the nodal point coordinates, and 
director vectors 

where we imply summation over k. The displacements, 
and incremental displacements, ui, of a particle of the 
element at time t are hence given by: 

where the are the nodal point displacements at time t, 
the are the incremental nodal point displacements from 
the configuration at time t, and the variables 
and βk are defined as in (2) but referred to the configu
ration at time t. 

This kinematic description implies the following hy-

† Note that the superscript t on a variable denotes the configuration at 
time t in the incremental solution, and does not imply a dynamic 
analysis. 
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potheses: the director vectors remain straight during the 
deformations; the 'thickness' of the element measured 
along the director vectors remains constant during the 
deformations; hence only small strain conditions are 
considered. 

Using the assumptions in (13) and (14) the 
geometric and material non-linear response is analysed 
using an incremental formulation2, in which the con
figuration is sought for time (load step) 't +∆t', when the 
configuration for time t is known. The basis of this 
incremental formulation is the use of the virtual work 
principle applied to the configuration at time t + ∆t. In 
essence, two approaches can be employed leading to the 
updated Lagrangian and the total Lagrangian formu
lations. These approaches are, from a continuum me
chanics point of view, equivalent, and in the following we 
develop the governing finite element relations for the total 
Lagrangian formulation. 

The principle of virtual work applied to the con
figuration at time t+At is: 

where the are the contra variant components of the 
second Piola-Kirchhoff stress tensor at time and 
referred to the configuration at time 0, and the are 
the covariant components of the Green-Lagrange strain 
tensor at time and referred to time 0. Both sets of 
tensor components are measured in the convected coor
dinate system / = 1,2,3. The external virtual work is 
given by and includes the work due to the applied 
surface tractions and body forces. 

For the incremental solution, the stresses and strains 
are decomposed into the known quantities, 
and unknown increments, so that 

In addition, the strain increment can be written as a linear 
part, and a non-linear part, hence 

Substituting from (16) to (18) into (15) and using 
the linearized expressions 
we obtain the linearized equation of motion: 

This equation is the basic equilibrium relation employed 
to develop the governing finite element matrices. For the 
actual solution of problems it is frequently important to 
use equilibrium iterations, but the finite element matrices 
and vectors used in these iterations can be derived directly 
from the matrices obtained using (19)2. Note that 

is now obtained using (9) with the condition 
=0, which implies the more natural condition 

only in the small strain case. 

The basic problem of the finite element discretization 
of (19) lies in expressing the strain terms of (19) in 
terms of the finite element interpolations. Using the 
definition of the Green-Lagrange strain components: 

and the relations in (13) and (14) we obtain: 

with the notation 

Further, we obtain for the transverse shear strains, 
using (3) and (6): 

80 Eng. Comput., 1984, Vol. 1, March 



A four-node shell element for non-linear analysis: E. N. Dvorkin and K. J. Bathe 

Note that, since we assume the thickness of the shell to 
be constant, the strain through the element thickness 
is zero. 

The expressions in (21) to (24) are substituted into 
(19) which in the standard manner yields the linear 
strain incremental stiffness matrix the non-linear 
strain (or geometric) incremental stiffness matrix and 
the nodal point force vector in the finite element 
incremental equilibrium relations2, 

The element matrices in (25) correspond to five 
degrees of freedom per node (see Figure 1) but in some 
applications it is convenient to use instead of 
three rotations about the global coordinate axes (see 
examples). In this case, we simply transform the matrices 
of (25) in the standard manner2. 

NUMERICAL TESTS AND EXAMPLE 
SOLUTIONS 
We have implemented our shell element in the ADINA 
computer program and have performed various numeri
cal tests to study the predictive capabilities of the element. 
The following solutions were all obtained using 2x2 
Gauss integration in the r3 =0 surface of the element, and 
2 and 4 point Gauss integration in the r3 direction, for 
elastic and elastoplastic analyses, respectively. 
Some simple tests 

As a first step to test the element, the eigenvalues of the 
stiffness matrices of undistorted and distorted elements 
were calculated. In all cases, as expected, the element 
displayed the six rigid body modes and no spurious zero 
energy modes. 

Patch tests. For the patch test2,18 the mesh shown in 
Figure 4a was used. In the first analysis (Figure 4b) the 
mesh was loaded with the constant moment indicated and 
a constant curvature (linear distribution of rotations) was 
obtained for both plate thicknesses in the two plate 
directions. The transverse displacements predicted by the 
model were, as expected, those of Kirchhoff-Love plate 
theory at nodes 7 and 8. 

In the second analysis (Figure 4c) the rotational degrees 
of freedom were deleted and the mesh was subjected to 
shear forces. As expected, for both plate thicknesses a 
linear distribution of transverse displacements was 
obtained. 

In the third analysis (Figure 4d) the mesh was subjected 
to an external twisting moment. In the thin plate analysis, 
constant curvatures were obtained in both plate direc
tions and the transverse displacements agreed with the 
analytical thin plate theory solution. In the thick plate 
analysis, a slight non-symmetry in the displacement 
response (the third digit) was obtained due to the 
unsymmetric representation of the transverse shear defor
mations. This non-symmetry is not observed, if the shear 
deformations are suppressed (which corresponds to thin 
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plate theory) by choosing a large value for the shear 
correction factor k (or when using rectangular elements in 
the mesh)2. 

Finally, it should be noted that the patch test is of 
course passed for the three membrane stress states (Τ1 1 , 
τ22 andτT12 constants). 

Cantilever linear analyses. A cantilever of unit width, 
thickness 0.1 and lengths lOand 100 was subjected to a tip 
bending moment. The structure was modelled using one 
single element and two distorted elements as shown in 
Figure 5. The results obtained in these analyses for the 
displacements and rotations at the cantilever tip and the 
stresses were those of Bernoulli beam theory. 

Next, the cantilever in Figure 6a was analysed for the 
transverse tip load shown. Using 4 equal size elements to 
idealize the cantilever, again good results were obtained 
when compared with beam theoretical results (see Figure 
6b and Table 1). 

Finally, the elements modelling the cantilever were 
distorted as shown in Figure 6c for a thin and a thick 
cantilever. The results given in Figure 6d and Table 2 show 
that the transverse displacements and normal bending 
stresses are almost insensitive to the element distortions. 
However, the calculated transverse shear stresses (not 
shown in the Figure) are not accurate. 

Linear analyses of a simply-supported plate. A simply-
supported plate was considered for a static and a fre
quency analysis using a consistent mass matrix. To model 
one quarter of the plate the 4 x 4 mesh of equal elements 
(Figure 7a) was used. Figure 7b and Tables 3 and 4 give a 
comparison of the numerically and analytically predicted 
results. The same plate was also analysed using the 
distorted element mesh also shown in Figure 7a and the 
results of Figure 7b and Tables 3 and 4 were obtained. 

Table 1 Cantilever tip transverse displacement: non-distorted me
shes of N elements 

1 0.750 
4 0.984 

Table 2 Cantilever tip transverse displacements 

Thickness ηIpoint B ηIpoint A 

0.1 0.989 0.996 
2.0 1.0013 0.995 

η) = (u3 distorted mesh)/(u3 non-distorted mesh) 
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Table 3 Non-dimensional displacements at centre of simply-
supported plate: distorted and non-distorted meshes 

Model 

non-dist. 
dist. 

u3
FEM/u3

thin plate at centre 

0.995 
0.992 

Table 4 Non-dimensional frequencies f (cycles/sec) for a simply-
supported plate: distorted and non-distorted meshes 

Mode shape 

1-1 
1-3 
3-3 

fFEM/fthin p l a t e 

1.02 
1.18 
1.17 

Analysis of a rhombic cantilever. The rhombic canti
lever shown in Figure 8, fixed at one side and subjected to 
constant pressure was analysed using a 4 x 4 element 
mesh. In Table 5, the results for the transverse displace
ments at six locations are compared against the solutions 
obtained using the DKT triangular element6, experimen
tal measurements1 and using the 16-node isoparametric 
element (with 4 x 4 x 2 Gauss integration). In all cases a 
one step geometric non-linear analysis with equilibrium 
iterations was performed. Good correspondence between 
the experimental results and the solution obtained using 
our new 4-node element is observed. 

Linear analysis of a cylindrical (Scordelis-Lo) shell 
The shell structure shown in Figure 9a has frequently 

been used to test the performance of shell elements12. 
Figure 9b shows the solutions obtained with our elements. 
In each of the solutions uniform meshes with equal sized 
elements were employed over one-quarter of the shell. 
Solutions obtained using the 3-node DKT triangular 
element25 and the 16-node isoparametric element25 are 
also shown. 

Linear analysis of a pinched cylinder 
The pinched cylinder problem shown in Figure 10a was 

also frequently analysed to test shell elements. Figure 10b 
and Tables 6 and 7 show the convergence behaviour 
obtained with our new element, when comparing the finite 
element solutions11'21. Note that using the isoparametric 
shell element3 also a fairly large number of degrees of 
freedom are required to predict the response of the cylinder 
accurately. 

Large deflection analysis of a cantilever 
The cantilever shown in Figure 11a was analysed for its 

large displacement and large rotation response. This is a 
typical problem considered to test the geometric non
linear behaviour of beam and shell elements25. Figure 11a 
also shows the models used in the analysis. 

The first two models are single element, cubic and 
parabolic isoparametric degenerate shell element models. 
Model I predicts the response of the cantilever very 
accurately, whereas model II yields an accurate response 
solution in linear analysis but locks once the element is 
curved in the non-linear response solution. This obser
vation is in accordance with the results reported 
elsewhere5. 

The same nodal point layouts were next employed for 
models IN and IV using our new 4-node shell element. 
Figures 11b-11d give the results obtained with these 
models. It is seen that model III yields an accurate large 
displacement response prediction, and even model IV 
yields quite accurate results up to about 60 degrees of 
rotation. The computer time required in these analyses 
were only little different using models I, III and IV. 

Another important result is shown in Table 8. As 
reported earlier5, the cubic shell element is sensitive to 
'in-plane' distortions, and hence it is interesting to study 
the effect of using a distorted element mesh in the analysis 
of the cantilever (see Figures 12a and 12b). Table 8 
summarizes the results obtained using the one cubic 
element and three 4-node elements with a nodal layout 
that corresponds to distorting the elements. It is seen that 
the predictive capability of our new 4-node element is 
considerably less sensitive to the element distortions. 
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Figure 8 Response of rhombic cantilever subjected to constant pressure. q = 0.26066; £=10.5x106; thickness = 0.125; v = 0.3 

Table 5 

Element 

DKT 
4-node 
16-node 
Experimental1 

Mesh 

4x4 
4x4 
2x2 

CPU time 
CPU time of DKT 

1.00 
approx. 2 
approx. 61/2 

1 

0.293 
0.272 
0.266 
0.297 

2 

0.196 
0.183 
0.182 
0.204 

Deflection at location 

3 

0.114 
0.106 
0.110 
0.121 

4 

0.118 
0.102 
0.105 
0.129 

5 

0.055 
0.046 
0.048 
0.056 

6 

0.024 
0.019 
0.019 
0.022 

Geometric non-linear response of a shallow spherical shell 
Figure 13a shows the spherical shell that was also 

analysed3 with one cubic shell element, modelling one-
quarter of the shell. To test our new 4-node shell element, 
the same nodal point layout was used3, giving a mesh 
of nine elements. Figure 13b shows the response 
calculated, including the post-buckling response (not 
reported in ref. 3) with the automatic load stepping 
algorithm4. Good correspondence with the analytical 
solution of Leicester2.0 and the solution of Horrigmoe16 

was obtained. The solution with the 16-node element was 
almost twice as expensive as the 4-node element solution 
(using in both cases the same parameters for the auto
matic step-by-step solution algorithm). 

Linear buckling analysis and large deflection response of a 
simply-supported stiffened plate 

The stiffened plate shown in Figure 14a was analysed for 
its buckling reesponse. Since we expect the buckling mode 
to be symmetric26 only one-quarter of the plate is 
modelled using symmetry boundary conditions. The 
model consists of nine 4-node shell elements and three 2-
node isoparametric beam elements. At the nodes where a 
shell element connects to a beam element, three rotational 
degrees of freedom aligned with the global axes are 
considered for the shell element. In order to avoid locking 
of the isoparametric beam elements, one point Gauss 
integration along the beam axes was used. This does not 
introduce spurious zero energy modes in the model 
although the bending stiffness of the beam is 
underestimated. 

The linearized buckling problem was solved as de
scribed in reference 4(37) and we obtained: 
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Table 6 Convergence study for 4-node element: pinched cylinder 

Mesh for 1/8th of shell Number of d.o.f. 

5x5 
10x10 
20x20 

130 
510 

2020 

Ŵc
FEM/Ŵc

analyt 

0.51 
0.83 
0.96 

Table 7 Comparison between displacements for 4-node and 16-
node elements: pinched cylinder 

Element 

4-node 
16-node 

Mesh for 1/8th 
of shell 

20x20 
10x10 

Number of 
d.o.f. 

2020 
4530 

Ŵc
FEM/Ŵcanalyt 

0.96 
0.98 

Next, an initial imperfection with the shape of the first 
buckling mode and a maximum amplitude of 1/5 of the 
plate thickness was introduced. Figure 14b shows the large 
deflection response of this model as calculated using the 
automatic load stepping scheme of reference 4 with a tight 
energy convergence tolerance. 

Analysis of elastoplastic response of a circular plate 
The thin circular plate shown in Figure 15a was analysed 

for its elastoplastic response, when subjected to a con
centrated load at its centre. The plate is simply-supported 
with its edges restrained from moving in its plane. 

In a first solution, the plate model shown in Figure 15a 
was used to analyse the plate assuming small displace
ments (materially-non-linear-only conditions). Figure 15c 
shows that the theoretical collapse load is overestimated, 
but for the coarse mesh used, the predicted response is 
quite reasonable. 

In a second solution, large displacements and elasto
plastic conditions were assumed and in this case the 
stiffening behaviour of the plate shown in Figure 15c was 
predicted. In order to have a comparison, also the model 
of five axisymmetric 8-node elements shown in Figure 15b 
was solved. Figure 15c shows that both models predict in 
essence the same response; however, in this case relatively 
little plasticity was developed for the range of displace
ments considered. 

CONCLUSIONS 

A new four-node non-flat general non-linear shell element 
has been presented with the following important element 
properties: (1) the element is formulated using three-
dimensional continuum mechanics theory; hence the use 
of the element is not restricted by application of a specific 
shell theory; (2) the element is reliable and has good 
predictive capability in the analysis of thick and thin 
shells; (3) the amount of computations required to 
calculate the element stiffness matrix are very closely 
those that are used in standard isoparametric formu
lations. The computer time used could be reduced con
siderably in elastic analysis by using analytical integration 
through the element thickness. 

In this paper we have presented the formulation and 
some applications of the element. The solution results 
obtained are most encouraging, but a formal mathemati
cal convergence study of the element would be very 
valuable, and we are currently pursuing such research. 

Finally, it should be noted that the element presented 
here provides a very attractive basic formulation that 
could be extended to large strain analysis and analysis of 
composite shells. Also, the concepts applied here to 
formulate a 4-node element could equally well be em
ployed in an effective manner to formulate higher-order 
shell elements. 
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Note added in proof — We have just learned — and regret 
not to have known of it earlier — that R. H. MacNeal 
[J. Nucl. Eng. Design, 70, 3-12 (1982)] proposed a plate 
element for linear analysis that is very close to the element 
presented above. 
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