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Linear and nonlinear problems
Material nonlinearities

Plasticity

Viscoplasticity, creep
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Linear and nonlinear problems
Geometrical nonlinearities: 

Equilibrium in deformed configuration
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Linear and nonlinear problems
Material + Geometrical nonlinearities + Contact: Collapse

Buckle arrestors
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Linear and nonlinear problems
Material + Geometrical nonlinearities + Contact: Collapse

Contact forces
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Linear and nonlinear problems

Material + Geometrical nonlinearities + Contact
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Linear and nonlinear problems
Material + Geometrical nonlinearities + Contact

OCTG connections

Structural Analysis
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Linear and nonlinear problems
Material + Geometrical nonlinearities + Contact

Finite elasto – plastic strains

OCTG connections: Failure analysis
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Cartesian Coordinate System

x (z1)

y (z2)

z (z3)

k

k: point or material particle

Continuos body
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Kinematics of the Continuous Media

Lagrangian description

Eulerian description
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Pop Quiz # 2

Eulerian formulation
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Is “a” the acceleration?

NO
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Kinematics of the Continuous Media
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Kinematics of the Continuous Media
The second transformation is only possible if the

compatibility equations are fulfilled

0

0

0

02

02

02

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

zyxxyx

zyxyxz

zyxxzy

xzzx

zyyz

yxxy

xyzxyzzz

xyzxyzyy

xyzxyzxx

zxxxzz

yzzzyy

xyyyxx



17
www.simytec.com

The Cauchy Stress Tensor
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The Cauchy Stress Tensor
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The Cauchy Stress Tensor
Definition:

(i=1,2,3)

(Above we use the summation convention)

P

t

n
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Pop Quiz # 3
Water tank

H
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The Cauchy Stress Tensor
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The Cauchy Stress Tensor

Equilibrium in the deformed configuration
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The Cauchy Stress Tensor
Equilibrium in the deformed configuration

b is the force per unit mass

In dynamic analyses include in f the inertia forces.
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The Cauchy Stress Tensor
Torques equilibrium

(symmetry)
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The Cauchy Stress Tensor and Physic

In nonlinear problems there are a number 

of stress measures that are used during calculations:

Kirchhoff stress tensor

Second Piola-Kirchhoff stress tensor

Biot stress tensor

etc.

They are only mathematical tools.

The final results with significance for us 

should be expressed in terms of 

the Cauchy stress tensor.
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Constitutive Relations

Phenomenological constitutive relations

http://www.mts.com/en/Material/Dynamic/index.asp
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Constitutive Relations

P

Elastic material
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Constitutive Relations
HOOKE’s LAW

Linear – elastic and isotropic materials
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Constitutive Relations
Elasto-plastic materials

Ingredients:

Yield surface: in the 3D stress space describes the locus of the points

where the plastic behavior is initiated.

Flow rule: describes the evolution of the plastic deformations.

Hardening law: describes the evolution of the yield surface during

the plastic deformation process.
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Constitutive Relations
Elasto-plastic materials

: deviatoric stress tensor
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Constitutive Relations
Elasto-plastic materials

Von Mises yield function (metals)
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Constitutive Relations
Elasto-plastic materials

Von Mises yield function (metals)
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Constitutive Relations
Elasto-plastic materials: The flow rule
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Constitutive Relations
Elasto-plastic materials: The flow rule

fg

metalsplasticityassociatedFor

g

ij

ij
P

ij
P

ij
E

ij

)(

g: plastic potential



35
www.simytec.com

Constitutive Relations
Elasto-plastic materials: The flow rule

For metals (von Mises + associated plasticity)
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Constitutive Relations
Elasto-plastic materials:Hardening

t

t+ t

Plastic loading

ISOTROPIC HARDENING
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Constitutive Relations
Elasto-plastic materials:Hardening

The isotropic hardening does not model 

the Bauschinger effect (Cyclic loading / unloading)
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Constitutive Relations
Elasto-plastic materials:Hardening

t

t+ t
KINEMATIC  HARDENING
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Constitutive Relations
Viscoplasticity

In plasticity: 

We need viscoplasticity to model the experimental fact:
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The principle of virtual work
A 1D problem

fB R

Adx
dx

d
)(

A: transversal area

E: Young’s modulus

A

dxf Bx

x=0 x=L

fB : load per unit length

R  : concentrated load

u(x) : unknown
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The principle of virtual work
A 1D problem

R
dx

du
EA

u

Lx

0)0( Essential (rigid) boundary condition

Natural boundary condition
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The principle of virtual work
A 1D problem

Equilibrium:

0Bf
dx

d
A

Constitutive equation:

E

Kinematic relation:

dx

du
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The principle of virtual work
A 1D problem

0
2

2
Bf
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AE

At every point inside the bar we must fulfill:

δu(x) is an arbitrary function

δu(0)=0 (condition) 

Hence, 0
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The principle of virtual work
A 1D problem

Integrating by parts,

Lx

L L

B uRdxufdxA
0 0

Virtual work of internal forces = Virtual work of external forces
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The principle of virtual work

Please notice that the PVW represents 
Equilibrium
and NOT

Energy Conservation
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The principle of virtual work
General 3D case

b: Loads per unit volume

t: Loads per unit surface

Please notice that the integral is calculated at

the deformed (unknown) configuration
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The principle of virtual work

No material restriction (applies to any material)

No kinematics restriction (large or small strains)

No loads restriction (conservative or non-conservative)
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