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Turbulent Movement 

The main characteristics of the turbulent flow is the random fluctuations in the
variables (fluid velocity, pressure, etc.) so that statistically distinct averages can be 
discerned. 

The fluctuations are due to a continuous generation and movement of eddies in the flow. 

It is worth pointing out that a turbulent flow is described by the usual continuum mechanics 
equations because the smallest length scales in a turbulent flow are much higher than the 
molecular length scales.

The mathematical description of a turbulent flow using the time averaged Navier- Stokes 
equations leads to the development of turbulence models to close the problem.

These turbulence models do not simulate the details of the turbulent motion but only the 
effect of turbulence on the mean-flow behavior. 
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Turbulent Movement 

Large portions of fluid (eddies) have a random variation of the velocity components in
three dimensions superimposes on a mean motion.

The eddies can change shape, stretch, rotate, or break into two or more eddies. Its size
determines the scale of turbulence.

At a given time the flow has a size distribution of eddies.

The largest eddies are the size of the flow (depth of a stair) while the small eddies canThe largest eddies are the size of the flow (depth of a stair) while the small eddies can
be of the order of one millimeter (sufficiently larger than the size of the molecules).

Small eddies (smaller scale length) occur in small time scale and are consideredSmall eddies (smaller scale length) occur in small time scale and are considered
statistically independent of large scale turbulent flow and mean flow.

The processes involving turbulent flows that change the length scale of the eddies.
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Turbulent Movement 

The large eddies that are continually forming eddies break up into smaller and smaller
and smaller until they finally dissipate as shear flow

Turbulent flows are dissipative. The small scale is reached when the eddies lose
energy by the action of viscous forces and convert internal energy on the small
eddies.

The turbulent fluxes are diffusive. The diffusivity of turbulence causes rapid mixing
and increases the speed of transfer of momentum, heat and mass.

Turbulence is rotational, three‐dimensional and is characterized by high levels of
fluctuating vorticity.

The intensity of fluctuations is variable, but not strictly periodic and random
distribution for a wide range or spectrum of frequencies.
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Turbulent Movement 

The small‐scale turbulent fluctuations are independent of mean flow. This is natural
because it does not consider the movement of these small eddies as a whole, but the
relative motion of particles.p

Small scales are independent of flow parameters and therefore can only depend on ε andp p y p
μ, but not on larger scales. The combinations of these quantities are:

Length scaleLength scale

Time scale

Velocity scale
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Turbulent Movement 
The Reynolds Number is Re = ηvρ/μ =1,

Kolmogorov microscales

The ratio of the scales involved in the problem of turbulence is:
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Turbulent Movement 

To solve the problem taking into account all scales between the external
d i l ( l l i h N i S k ) d d i hand internal (exactly solving the Navier Stokes) are needed in three

dimensions on the order of Re9 / 4 degrees of freedom.

For a Reynolds number of 10000 (the reasonable minimum in any (
industrial problem) then it would take 109 degrees of freedom, 8
Gbytes to store only the unknowns, it is not possible with current
computer capabilities.computer capabilities.
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Turbulent Movement 
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Turbulent Models 
“A turbulence model is defined as a set of equations (algebraic and differential)
which determines the turbulence transport terms and thus closes the system of the
equations to be modelled. The turbulence does not simulate the details of the
turbulent movement but the effect of turbulence on the behavior the medium

“A turbulence model is defined as a set of equations (algebraic and differential)
which determines the turbulence transport terms and thus closes the system of the
equations to be modelled. The turbulence does not simulate the details of the
turbulent movement but the effect of turbulence on the behavior the mediumturbulent movement but the effect of turbulence on the behavior the medium
flow.” [Rodi-80]
turbulent movement but the effect of turbulence on the behavior the medium
flow.” [Rodi-80]

Instantaneous variable

ψφψφ +=+

φφ xx ∂=∂

φφ tt ∂=∂

φφ = φφ

ψφψφ =

0=′φ
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Turbulent Models 
Medium values equationsMedium values equations

0=∂ ii uContinuity equations:

Navier - Stokes
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Turbulent Models 

Models "ad‐hoc" or zero‐equation model or algebraic models:models for simple flows,
which relate the turbulent viscosity with the velocity gradient through an empirical
algebraic equation. The most commonly used in these models is the model of the
Prandtl mixing length. These models are developed to solve certain flows and can not
b t l t d t th l ti f diff t flbe extrapolated to the resolution of different flows.

Model of one equation: the eddy viscosity is related to a physical property representing
the phenomenon of turbulence and use a partial differential equation of the type of
transport to model this property El más utilizado en este tipo de modelos es el modelotransport to model this property. El más utilizado en este tipo de modelos es el modelo
de la energía cinética turbulenta (k).
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Turbulent Models 

Model of two equations: the turbulent viscosity is calculated from the turbulent kinetic
energy (k) and any other proxy for the phenomenon of turbulence The behavior of k andenergy (k) and any other proxy for the phenomenon of turbulence. The behavior of k and
the second variable is modeled by two partial differential equations of the type of
transport. Some of these models are:

k‐f f is the frequency energy of turbulent eddiesk f           f    is the frequency energy of turbulent eddies

k‐ω ω is  the fluctuation in the time‐averaged vorticity

k‐ε          ε is the dissipation rate of the turbulent kinetic energy
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Turbulent Models 

Reynolds stress model: do not use the definition of turbulent viscosity and require
equations to model the termsequations to model the terms

''vv

Two‐fluid models: are based on the concept of averaging the flow variables and 
turbulent flow considering non turbulentturbulent flow considering non‐turbulent.
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Algebraic model – L model 

The Reynolds stress tensor is related only to the mean flow distribution to each point. That is, 
implicitly assume that turbulence is generated and dissipated where there is no transport of 
turbulence.

Of the various algebraic models in the literature will be developed as the oldest example of them: 
the model of the Prandtl mixing length (1925).

Considering a shear flow in Cartesian coordinates with a single turbulence tension  and a single 
component of the velocity gradient                    significantly

y
v x

∂
∂

Prandtl postulated that fluctuating movement characteristic 
velocity is equal to the average velocity gradient for the mixing 
length of movement (lm) established an analogy betweenlength of movement (lm), established an analogy between 
molecular movement and the  small eddies movement, 
postulating the existence of a length similar  to the mean free 
path given by the kinetic theory, called the mixing length.
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Algebraic model – L model 

Inconvenients μt = 0 ; Channel center

However, there is turbulence in the area and μt must have a finite value.

The value taken for the lm length should be adjusted to each problem to obtain agreement with
experiment. For example, in the vicinity of solid walls, the non‐slip boundary conditions imply that
mediaum velocity and the fluctuant velocity must be zero.mediaum velocity and the fluctuant velocity must be zero.

Reynolds stresses (as opposed to laminar tension) should be zero on the walls.
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Algebraic model – L model 

Tube, R= radius, r = axis distance

3D algebraic model
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(k-L)  model
The k‐L model were developed to overcome the shortcomings of the hypothesis of
mixing length

b d h d l h b h l fl l dAbandon the direct relationship between the scale fluctuating motion velocity and
mean velocity gradients and instead determine this scale from a transport equation.

Th t b l t ki ti ki ti d t fl t ti i th l it (k) iThe turbulent kinetic energy or kinetic energy due to fluctuations in the velocity (k) is a
measure of the intensity of turbulence and √ k is a quantity that can characterize the
scale of turbulent flow velocities.

Kolmogorov, Prandtl and Emmons independently proposed the following relation for
the eddy viscosity

LkCt
μρμ =
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(k-L)  model
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(k-ε)  model

The trend in the development of turbulent flow models was considered models in
which besides the scale model of fluctuating movement velocities also model thewhich besides the scale model of fluctuating movement velocities also model the
length scale from a transport equation, always within the Prandtl hypothesis.

Any relationship of the form z = km Ln could be adopted as a variable
independent, since k is known to solve their own transport equation.

The variable z is normally preferred dissipation rate of turbulent kinetic energy (ε), to
be interpreted as the rate of turbulent energy transfer from large eddies to small
eddies,
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(k-ε)  model
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C1 = 1.44   ;   C2 = 1.92   ;   Cμ = 0.09   ;    σk = 1.0   ;   σε = 1.3
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(k-ε)  model
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Walls 

One of the most important problem of turbulence is when the local Reynolds
turbulence number is low.

The presence of the wall ensures that over a finite region of the flow, however
thin, the turbulence Reynolds number is low enough for molecular viscosity to
i fl di tl th f d ti d t ti d t t finfluence directly the processes of production, destruction and transport of
turbulence.

Two solutions for this problem:

Wall functionsWall functions

Low Reynolds number model
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Walls 

b d b l

Laminar boundary layer Turbulent boundary layer

Laminar boundary sub‐layer
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Walls 

n

Area occupied by the finite element mesh

Δt

n
Area modeled by the wall functions

wall

Wall function method

With th  l it  ( ll l t  th  ll) t th  i t P i  (i) it tiWith the velocity (parallel to the wall) at the point P in (i)-iteration

Calculate the friction velocity (u*)  in y = Py ( ) y

w

tw yuy
μ

ρ
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ρ
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t uu == * 41.0=κ
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Walls 

n

Area occupied by the finite element mesh

Δt

n
Area modeled by the wall functions

wall

Wall function method

A l  i  (i 1) it ti  th  f ll i  b d  diti  t i t PApply in (i+1)-iteration the following boundary conditions at point P

2*uρτ = 2/1
τk = or 0=d

dk kCμε
2/34/3

=uρτ = 2/1μρC or dy yκε

http://geolab.larc.nasa.gov/APPS/YPlus/
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Walls 

Turbulent kinetic energy
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Walls 

Dissipation rate of turbulent kinetic energy
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Low Reynolds Number 
1 Vi diff i f k d E t b i l d d1. Viscous diffusion of k and E must be included

2. Further terms must be added to account for the fact that the dissipation
processes are not isotropicprocesses are not isotropic
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Channel
Boundary conditions at the entranceBoundary conditions at the entrance

Velocities
Turbulent kinetic energy (k)
Dissipation rate of turbulent kinetic
energy (e)

Boundaty conditions at the walls:
No slip
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Channel
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Cavity with sliding wall

Boundary conditions at the upper wall
Velocities
Turbulent kinetic energy (k)

Boundary conditions at other walls
No slip

Dissipation rate of turbulent kinetic energy (ε)
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Cavity with sliding wall
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Cavity with sliding wall
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Backward facing step

Velocities = 0.022 m/s
Reynolds = 44000
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Backward facing step

36
www.simytec.com



Backward facing step
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