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Abstract 

Lagrangian and eulerian models for particle transport by a turbulent fluid phase are presented.  In both 

methods, particle distribution results from the action of applied forces (buoyancy, inertial, added mass 

and drag forces) and turbulent effects are shown. The carrier phase flow –which is solved by finite 

element method using a k-ε turbulence model– is assumed not to depend on the particles motion. In the 

lagrangian formulation the dynamic equation for the particles is solved. A discrete random walk model is 

used to account for the turbulent effects. In the eulerian formulation, the particle concentration is 

calculated from a convection-diffusion equation using the terminal particles velocity and turbulent 

diffusivity. Both models are compared to experimental measurements and analytical results; a good 

agreement is observed. 
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Nomenclature 
Cμ Constant of k-ε model 
C1 Constant of k-ε model 
C2 Constant of k-ε model 
CD Drag coefficient 
cp Dimensionless concentration 
Cp Particle mass concentration 
Cc

p Centerline particle mass concentration 
Co

p Initila particle mass concentration 
Dp Particle diameter 
Dw Particle-wall distance 
g Gravity acceleration 
h Height 
Io Modified bessel function of first kind and 

order 0 
Jv Bessel function of first kind and order v 
k  Turbulent kinetic energy 
L  Mixing length 
mp Particle mass 
Np Number of particles 
P Time averaged pressure 
R Radius 

peℜ  Particle Reynolds number 
t Time 
T Relaxation time 

fv  Time average fluid velocity 

fv0  Uniform axial fluid velocity 
pv  Particle velocity 
pv0  Particle velocity initial value 
p

Tv  Particle velocity terminal value 
w Normal Gaussian random variable 
xp Particle position 
zm Zeros of Jo 
 
Greek simbols 

pα   Particle volume fraction 
Δt Time step 
ε  Turbulent kinetic energy dissipation rate 

fμ  Fluid laminar viscosity 
η Dimensionless radial coordinate 

fρ   Fluid density 
pρ   Particle density 

σk Constant of k-ε model 
σε Constant of k-ε model 
σ  Turbulent Schmidt number 
θ Dimensionless time 
ξ Dimensionless position 
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1. Introduction 

 

Particle transport by a fluid carrier is a phenomenon of great interest since it is frequently found in 

many scientific fields and industrial processes. Particle dispersion and deposition plays a critical role in 

several scientific fields and industrial applications: 

 inclusion transport in liquid steel [1,2], 

 pharmaceutical particle transport and deposition in the human lung [3], 

 particle separation in a hydrocyclone [4], 

 pollutant transport and deposition in coastal waters [5], 

 aerosol transport in flows [6], 

 dust pollution in urban area [7], 

 dynamic behavior of dross in hot dip bath [8]. 

The numerical simulation of particle transport by a fluid carrier requires the modeling of the 

continuous phase (fluid), the discrete phase (particles) and the interaction between them. The continuous 

phase –whether liquid or gas– is modeled using an Eulerian formulation.  The discrete phase –fluid, 

gaseous or solid– may be approached both from a Eulerian or from a Lagrangian point of view.  This has 

given place to two distinctive strategies, the so called Eulerian-Eulerian and the Eulerian-Lagrangian 

methods.   In the Eulerian-Eulerian approach [4, 6-7, 9-11], particle velocity and concentration fields are 

calculated for each point of the numerical domain.  The Eulerian-Eulerian method can be employed both 

using a one-fluid formulation [2, 4] and a two-fluid formulation [6-7, 9-11].  In the latter, mass 

conservation and momentum conservation equations are used to calculate the particle concentration and 

velocity fields, so the phases are treated as two interpenetrating fluids which interact through their 

interfacial properties.   In the one fluid formulation, on the other hand, no momentum conservation 

equation is used.  Particle velocity is usually determined by an algebraic equation for the particle-fluid 

slip velocity. In the Eulerian-Lagrangian formulations [5, 12-15], each particle trajectory is simulated. 

The particle dynamic is generally governed by the Basset-Boussinesq-Oseen (BBO) equation and a 

random walk model is applied to account for the turbulence effect.  In order to solve the BBO equation, 

the continuous phase properties must be calculated at particle position. 

The interaction between phases is modeled according to the strength of the coupling between them.  

For dense particle concentration, particles action on the fluid and the interaction between particles must 

be accounted for (four way coupling). For intermediate concentrations, particle interaction can be 

neglected but particle influence on the continuous phase cannot (two-way coupling). For dilute 

concentrations, the fluid flow may be considered regardless of the particles flow (one-way coupling). 

According to Elghobashi [16]), a criterion to determine the type of interaction in terms of the particle 

volume fraction of particles ( pα ) is as follows: 

 
610−<pα , for one-way coupling [1-15]. 

 
36 1010 −− ≤≤ pα , for two-way coupling [17-18]. 
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310−>pα  , for four-way coupling [19]. 

 

In the present work, we will present both an Eulerian-Eulerian –one fluid– formulation and an 

Eulerian-Lagrangian formulation and we will use them to solve the same problem.  Since both 

formulations may provide useful information about the particle transport process, our motivation is to 

show the consistency of both approaches by comparing their results to measurements of particle 

concentration in free turbulent axisymmetric jet. In the following section the turbulent flow model is 

presented.  In section 3, we describe the Lagrangian and Eulerian formulations.  Section 4 contains a 

series of simple problems used for model verification.  In Section 5, the methods are validated by 

comparison with experimental concentration measurements.  Section 6 is devoted to conclusions. 

 

2. Turbulent flow model 

 

The general flow is assumed not to depend on particle dynamics; therefore it is uncoupled from the 

particle transport model (described in section 3). 

The turbulent flow model hypotheses are viscous incompressible flow, isothermal flow, constant fluid 

density, constant fluid laminar viscosity and a turbulence k-ε model. The following equations are solved: 
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Typical constants of k-ε model of Launder  and Spalding [20] are  Cμ = 0.09 ,  C1 = 1.44  ,  C2 = 1.92  ,  

σk = 1.0  and  σε = 1.0. 

Equations (2-6) are solved implicitly using a standard isoparametric finite element discretization for 
fv , k  and  ε. The incompressibility constrain –Equation (1)– is imposed by penalization [21].  A 

streamline Upwind Petrov-Galerkin technique [22] is used for stabilization. 

The iterative scheme required to solve the equations use the k-L predictor / (ε) corrector algorithm 

described in [23-24] together with wall functions for boundary conditions [25]. 
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3.  Particle transport model. 

 

As mentioned in the introduction, the coupling between the two phases depends on the concentration 

of particles.   We assume that concentration of particles is low enough in order to consider valid the one-

way coupling model.  This constitutes an important simplification since the fluid and particle dynamics 

are decoupled and the particle motion is calculated once the fluid flow has been obtained.  

The motion of a rigid particle in a viscous flow may be described by an ordinary differential equation 

derived by Oseen based upon the works of Boussinesq and Basset.  When the effect of the previous 

history of the particle (Basset force term) is neglected, the BBO (Basset-Boussinesq-Oseen) equation may 

be expressed [26-27]. 
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Equation (7) represents the Newton law for a spherical particle of density ρp, diameter Dp and 

velocity pv .  Terms on the right hand side are volume forces acting on the particle.  Four different forces 

are taken into account in Equation (7): 

 the inertial force (first term on the right hand side) which depends on local fluid velocity fv  

and fluid density fρ ,  

 the buoyancy force (second term on the right hand side) due to the action of gravity acceleration, 

 the drag force (third term on the right hand side), characterized by the coefficient CD   –to be 

discussed below– and  

 the added mass force (last term on the right hand side) that takes into account the fact that the 

fluid near the particle is also being accelerated. 

The drag coefficient CD is found to depend only on the particle Reynolds number, 

fpfpfp De μρ /vv −=ℜ . The function ( )p
D eC ℜ  was obtained experimentally and may be 

approximated by [28],  
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3.1 Lagrangian formulation. 

 

In a Lagrangian formulation of the particle transport process, the motion of particles is described by 

solving a set of ordinary differential equations along the trajectory in order to calculate the change of 

particle location and the components of particle velocity. 
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Particle velocity is calculated from the contributions of a term resulting from the solution of the BBO 

equation, pv , and a second term that takes into account turbulent fluctuations of the flow field. The BBO 

equation is solved for each particle using a backward Euler scheme. Particle velocity due to turbulent 

fluctuations is obtained using a discrete random walk model. As a result of these, two particles with same 

initial conditions may have different trajectories.  When many particles are considered, an effective 

diffusion results from turbulence effects. 

Taking into account the mean velocity and the turbulent velocity, particle position is updated 

according to  
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where w  is a random variable with a normal gaussian distribution with a zero mean and a Δt variance 

[29].  σ is the turbulent Schmidt number, assumed constant throughout this paper. Turbulence viscosity is 

given by the k-ε model discussed in the previous section. 

In order to calculate the particle velocity, flow variables are required at current particle position. Thus, 

it is necessary to know which element the particle is in.  All the elements are inspected beginning with the 

one where the particle was in the previous time step and going on with first neighbors (see Figure 1a). For 

a given element, if the particle coordinates are within the maximum and minimum element coordinates 

(black dashed rectangle, see Figure 1b) particle natural coordinates (r,s) are calculated.  The particle is 

inside the element if its natural coordinates are within the [-1 1] interval. 

Particle-wall collisions become of importance in confined flows. We consider a hard sphere model for 

wall collision that implies a negligible particle deformation during the impact process. Once a particle 

displacement modulus Δx is obtained, all nodes with particle-wall distances Dw < Δx are selected (see 

Figure 2). For every wall element, intersection between Δx segment and the boundary segments is looked 

for. The final position of the particle is obtained by reflecting the particle on the solid wall. Wall rugosity 

may be taken into account by a random perturbation on the reflection angle. 

 

3.2  Eulerian formulation. 

 

In an Eulerian formulation of the mass transport process, particle trajectories are not calculated. The 

mass concentration of particles, pC , as function of time and space is calculated instead, 

V
NLimmtC

p

V
pp

Δ
= →Δ 0),(x  (10) 

where ( )VN p Δ  is the number of particles present in volume VΔ located at x  and pm is the particle 

mass.  In the present analysis, all particles are assumed to have the same density and size.  

The particle mass conservation requires that pC satisfies the following relation,  
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where ),( txF  is the particle mass flow, which has contributions from both the average flow and from 

turbulent fluctuations, turb
pp C FvF += . The mean velocity is obtained from the BBO equation.  

Since turbulent fluctuations are unknown, their contribution to the particle mass flow requires to be 

model. Assuming a linear relation between the turbulent component of F and the concentration gradient, 

the following expression is obtained   
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Using the above expression for the particle mass flow on the conservation equation, a partial 

differential equation for ),( tC p x is found, 
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Since particle dynamics were assumed not to have influence on the fluid flow, velocity and turbulent 

viscosity fields do not depend on the concentration and the problem results linear.  

Equation (13) is a transport-diffusion equation and was solved using isoparametric finite elements 

with Streamline Upwind Petrov Galerkin stabilization technique [22].   Special attention must be paid to 

the term ppC v⋅∇ that takes into account the fact that the particle velocity field is not necessarily 

solenoidal. 

In order to solve Equation (13), proper boundary and initial condition should be specified for the 

equation to have a unique well posed solution.  The problem requires initial values of pC in the whole 

numerical domain and prescribed pC  values or its normal derivative in the boundaries. 

The particle velocity field, pv , is obtained from the BBO equation, neglecting the particle 

acceleration with respect to the fluid acceleration, 
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For a small particle Reynolds number, ( )pffpf
D DC ρμ /24=− vv  and the following 

expression is found for the particle velocity,  
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The above expression has been successfully used in the flow calculation of a hydrocyclone where 

centrifugal forces are relevant [see, for instance, 30 and 31]. 
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4.  Verifications. 

 

In order to verify the models described in the previous section, different test cases with simplified 

geometry and physics were analyzed.  Numerical results were compared to available analytical solutions.  

Sub-sections 4.1 and 4.2 are devoted to the Lagrangian and Eulerian models respectively.  In Sub-section 

4.3 we present a test case where both models may be verified simultaneously. 

 

4.1  Lagrangian model verification. 

 

The Lagrangian model was verified by analyzing the velocity and the trajectory of a wooden sphere in 

water. The sphere starts moving along the gravity direction, then slows down and reverses its direction to 

finally reach the terminal velocity.  The following solution holds for particle velocity and position 
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Our Lagrangian numerical results and analytical solutions are compared in Figure 3. 

 

4.2  Eulerian model verification. 

 

Verifications for the Eulerian model were carried out by analyzing the flow on a cylinder (height h 

and radius R) with uniform initial concentration pC0 and uniform turbulent viscosity tμ .  Numerical 

results for the dimensionless concentration ppp CCc 0/= were compared to analytical solutions for three 

different test cases. An small particle Reynolds number was assumed. 

 

Case 1: Uniform flow 

 

We first considered the time and spatial evolution of the concentration when the fluid flows with 

uniform axial velocity fv0 .  The concentration only depends on the axial coordinate, so the problem 

requires boundary conditions at z=0 and z=h to be specified.  

The following analytical solution holds when homogenous Dirichlet boundary conditions are applied, 
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Comparison of our Eulerian numerical results and analytical solutions for 5.7=λ  are presented in 

Figure 4.   

 

Case 2: Fluid at rest 

 

As a second example we considered flow at rest and analyzed the evolution of concentration due to 

diffusion through the cylinder lateral surface (with a homogenous Dirichlet boundary condition).   The 

problem depends only on the radial coordinate.  The corresponding analytical solution is 
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A comparison of our Eulerian numerical and analytical results is shown in Figure 5. 

 

4.3 Joint Lagrangian and Eulerian verification 

 

As a final verification of the model, we considered the axisymmetric diffusion of particles trough a 

homogenous fluid at rest in an unbounded domain.  The problem is defined by the particles initial 

distribution and their diffusivity in the fluid, κ p.  For an initial concentration given by, 
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the analytical solution is 

ηη
θ
ηξ

θ
η

θ
ξ

θ
dIc p ⎟

⎠
⎞

⎜
⎝
⎛

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ −
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ −
= ∫ 0

1

0

22

2
exp

2
exp1

 (24) 

where 2
0 2 and/,/ −=== tRRrCCc pppp κθξ .  I0 is the modified Bessel function of the first 

kind and order 0. 

This problem may be approached by both the Lagrangian and Eulerian formulations.  The 

corresponding results are shown in Figure 6. 

 

5 Validation 

 

In order to validate both the Lagrangian and Eulerian model, we analyzed the flow and concentration 

field due to an isothermal, turbulent, axisymetric air free jet.  Numerical results are compared to 

experiments carried out by Becker et al [32]. 

The jet is discharged into stagnant room air, with negligible temperature variation, from essentially an 

ideal flow nozzle of 0.635 cm throat diameter and 2.41cm upstream tube diameter. The nozzle air was 
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marked with an oil smoke. The nozzle air velocity is of 130 m/s, giving a nozzle Reynolds number of 

54000 (see Figure 7). 

The concentration radial profile is found to become self-preserving about 40 nozzle radii downstream 

of the nozzle.  Results are expressed in terms of the normalized concentration CP/CP
c as function of the 

dimensionless radial coordinate η=r/(d-4.8r0), where CP
c is the centerline concentration CP

c = CP(r=0),  

r0 is the nozzle radius and d is the axial position. 

Both the Lagrangian and Eulerian formulations may be applied to model this problem. The 

corresponding results will be compared to experimental data reported in [32].   A turbulent Schmidt 

number of 0.78 was found to provide the best fitting with experiments, which is consistent with results 

presented in reference [33].   Both methods proved to be adequate to simulate the particle concentration 

distribution in this kind of problems. 

Fluid dynamics and Eulerian formulation results were obtained on a 24,000 nodes mesh.  The 

Lagrangian formulation results were obtained by analyzing trajectories of 80,000 particles.  In order to 

compare results, the Lagrangian method requires the particles concentration at the sample point to be 

calculated.  For any given time step, the number of particles Np in a volume V centered at the sample 

point is counted and the concentration is estimated by VNC pp /= .  The volume V is chosen large 

enough to include a representative number of particles and small enough to keep the calculation as local 

as possible. 

Comparison between the Eulerian and Lagrangian formulatins are presented in Figure 8.  The Figure 

presents a general qualitative agreement between both formulations in the whole domain.  

For a quantitative comparison Figure 9 and 10 present data from both formulations together with 

experimental results, showing remarkable agreement. 

 

6. Conclusions 

 

Lagrangian and Eulerian formulations have been developed to model particle transport in a turbulent 

flow. Both formulations were verified in test cases and used to simulate the particles concentration 

generated by an isothermal, turbulent, axisymmetric free jet.  Results showed good agreement with the 

experiment and pointed out the consistency of both formulations.   

Compared to the Eulerian approach, the Lagrangian formulation provides a better insight of particle 

dynamics, enabling an easy treatment of particle transients, particle collisions and coalescence and wall 

collisions.  On the other hand, the Lagrangian formulation becomes computationally expensive when a 

large number of particles is involved and usually requires post processing of results.  

For this reason, Lagrangian and Eulerian formulations are complementary and, in many industrial 

applications, both approaches become relevant.  However, the consistency of both approaches must be 

accounted for. It is important to note that, in the present numerical calculations, the concentration 

distribution as predicted by the Lagrangian formulation do tend to that predicted by the Eulerian 

formulation, provided the number of particles is large enough.  This consistency is achieved by using a 

discrete random walk model that correctly represents the turbulent effects on the particle trajectory. 
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Figure 1: particle localization 
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Figure 2: particle-wall collision 
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Figure 3: Time evolution of a wood particle in water. Comparison of numerical and analytical 

solutions for 
33
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Figure 4: Comparison of numerical solution (triangles) and analytical results (lines) for different time 

steps. 
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Figure 5: Comparison of numerical solution (triangles) and analytical results (lines) for different time 

steps. 
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Figure 6: Analytical solution (black lines), Eulerian model results (red squares) and Lagrangian model 

results (blue triangles) for axisymmetric diffusion problem. 
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Figure 8: Comparison of Eulerian (left) and Lagrangian (right) results 
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Figure 9: Experimental solution [32] (red) and Eulerian model results (green) for normalized self-
preserving radial profiles of the concentration in free jet problem. 
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Figure 10: Experimental solution[32]  (red) and Lagrangian model results (blue) for normalized self-

preserving radial profiles of the concentration in free jet problem. 
 


