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Abstract−− A fluid dynamic – thermal coupled 
model was developed. This model takes into account 
the movement of solid contours and the thermal 
coupling between the different model domains (solid 
or liquid). The finite element method was employed 
to solve the conservation equations. The model gives 
the possibility that the different meshes are not con-
nected; this generates a great flexibility in meshing 
and in geometry modification. The domains coupling 
algorithm could be validated using simple problems. 
Finally, the model developed was validated and ap-
plied successfully to the simulation of the fluid dy-
namic thermal behavior of hot dip galvanizing bath. 

Keywords−− fluid dynamic, thermal, finite ele-
ment method, coupled problem, continuous galvaniz-
ing. 

I. INTRODUCTION 
Numerical fluid dynamics is nowadays a powerful and 
reliable tool for simulating different thermo-fluid dy-
namic processes. Hence, it permits to analyze different 
operative variables and geometrical configurations to 
investigate technological windows of different 
processes in metallurgical industry. In some cases, the 
industrial process involves moving solid contours like 
rotating cylinders or circulating strips. This solid con-
tours exchange momentum and heat with the surround-
ing fluid. In this paper a fluid dynamic – thermal 
coupled numerical model was presented.  

In section II the governing equations and the used 
hypothesis are presented. In section III the numerical 
scheme used to solve the equations and the coupling 
method are described. The model was validated with 
simple cases. In section IV The model was validated 
and applied to the galvanizing process. Finally, in sec-
tion V the conclusions are presented. 

II. GOVERNING EQUATIONS 

A. Turbulent fluid dynamic – thermal model 
In order to obtain the field of velocities, pressures and 
temperature in a turbulent incompressible fluid flow the 
equations of Navier Stokes and energy using the Bous-
sinesq approximation are solved. 
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Where ρf is the fluid density, µf is the fluid laminar 
viscosity, µt is the turbulent viscosity, v is the time av-
eraged velocity, p is the time averaged pressure, 

( )ref
thbth TT −= βρ gF  is the buoyancy force, g is the 

acceleration due to gravity, thβ  is the thermal expansion 
coefficient, Cpf is the fluid specific heat, λf is the fluid 
thermal conductivity and Prt is the Prandtl turbulent 
number. 
The mathematical description of the turbulent flows 
using mean quantities equations makes necessary the 
use of turbulence models to close the problem. For in-
dustrial problems modeling the mixl model or the k-ε 
model (Launder and Spalding 1974) are commonly 
used. 

Due to the turbulence models cannot solve the flow 
in the zone near the solid contours, the wall functions 
method (Launder and Spalding 1974) is used. The finite 
element mesh is located at a wall distance Δwall. The 
friction velocity u* is calculated solving the nonlinear 
equation 
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And then, τw  is applied in the corresponding fluid 
node. 

 
2*uw ρτ =  (6) 



In order to solve the thermal coupled problem the 
boundary layer temperature profile is considered to 
transfer the boundary condition as in the case of veloci-
ties. A similarity between the velocity profile and the 
temperature profile is assumed. The dimensionless tem-
perature is obtained like 
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Then, knowing the solid wall temperature Ts a heat 
flow is applied ( )fs TThQ −= , where += TuCph /*ρ  is 
the convective heat transfer coefficient. 

 

B. Solid thermal model 
In order to obtain the field of temperatures in the solid, 
the energy equation are solved. 
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Where ρs is the solid density, Cps is the solid specific 
heat transfer, Ts is the solid temperature, vs is the solid 
velocity and λs is the solid thermal conductivity. 

The term sss TCp ∇.vρ  allows modeling a moving 
solid seen from an eulerian point of view as to be rotat-
ing cylinders or plates moving in the direction of its axis 
as it is shown in figure 1. 

 
Figure 1 – moving solids 

C. Coupling between fluid and solid model 
In the first place, a connection between the solid and the 
fluid exists due to the tensions in the solid - fluid inter-
face. These tensions are modeled through the wall func-
tions, which were modified to consider the velocity of 
the moving solid contour, which is always tangent to the 
fluid - solid interface. The Eq. 8 takes the form 

 ( )Ey
u

vv sx +=
− ln1

* κ
 (10) 

where vs is the solid contour velocity. 
In the second place, a thermal connection between 

the fluid and the solid exists due to the heat exchange 
between both domains through the fluid - solid inter-
face. This heat exchange is modeled by means of a 
Newton cooling law. 

 )( fsf TThQ −=  (11) 

 

where h is the convective heat transfer coefficient, 
that is calculated by means of the thermal wall laws 
(Principe and Goldschmit, 1999) and Ts and Tf is respec-
tively the solid temperature and the fluid temperature. 
For the solid we have 

 )( sffs TThQQ −=−=  (12) 

III. NUMERICAL SOLUTION 

A. Finite element model 
The Navier Stokes and scalar transport equations are 
solved using the streamline upwind Petrov Galerkin 
method (SUPG) and a Newton Raphson scheme. The 
pressure P is replaced in terms of the velocity in the 
equation (2) using the penalty of the incompressibility 
condition (Zienkiewicz and Taylor, 2000). The domain 
was approximated using 8 nodes linear isoparametric 
hexahedral elements. 
 

B. Coupling scheme between different domains 
Due to it is solved a reduced domain for the fluid, the 
meshes that approximate the different domains (solid 
and fluid domains) are not connected. 

In order to connect the solid domain and the fluid 
dynamic model it is necessary to know, for each contour 
node of the fluid mesh, the solid contour velocity value 
in that point. Taking this velocity, it is obtain the equiv-
alent tangential tension to apply in the contour fluid 
domain due to the relative movement between solid and 
fluid. For it, each fluid mesh contour node is projected 
on the solid contour (see Fig. 2). 
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Figure 2 – projection scheme 
 
This problem is limited to find the projection of a 

point on a plane. For each node of the fluid contour do-
main the following steps are made: 
- a superficial element is taken from the solid do-

main and the distance between the fluid node and 
the plane that contain the superficial element is 
calculated. 

 nxxdist f •−= )( 1  (13) 

- If the dist value is negative or is not equal to Δwall, 
the element selected is rejected and another ele-
ment is analyzed. 

- If the dist value is equal to Δwall, the intersection 
point xi is obtained 



 ndistxx fi ⋅−=  (14) 

- Then, the natural coordinates (ri,si) are calculated, 
using the intersection point position xi and the four 
nodes coordinates x1,… x4, solving the nonlinear 
equation system 
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- If ri and si values are between [-1,1] the projection 
point is the correct. In the opposite case, the ele-
ment selected is rejected and another surface ele-
ment is analyzed. 

 
Then, it is possible to obtain for each fluid contour 

node the corresponding solid velocity vs
f according to 

the following equation 
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In order to couple the fluid and solid thermal models 
is necessary to evaluate the heat exchange term (Eq. 11 
and 12). This term discretized by finite element method 
takes the form 
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Where 
f
S

T̂  are the solid temperature evaluated at the 
fluid contour nodes. 

There are two possible solving schemes for the solid 
– fluid thermal coupling. One possibility is to solve the 
fluid and solid thermal equations in segregated manner, 
supposing known the solid temperature and solving the 
fluid temperature distribution. Then, the vector f

S
T̂  is 

obtained from 

 
f

s
e
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In the same way, the solid temperature distribution is 
obtained supposing known the fluid temperature. This 
process is repeated until the convergence is achieved. 
This scheme introduces an iterative process to solve a 
linear problem, but it has the advantage to solve in each 
step a partial computational domain. 

Another solving scheme, is to calculate simulta-
neously the fluid and solid temperature distributions 
solving an equation system of the form 
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Where the different matrix parts are as follow 
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In this solving scheme the whole temperature distri-

bution are obtained solving a bigger equation system, 
but with the advantage to avoid the iterative process. 

The solving scheme is presented in figure 3, where 
in the first place the fluid dynamic problem is solved, 
then the coupled thermal problem is solved, and this 
process is repeated until the convergence is achieved for 
velocities and temperatures.  

The convenience in the use of one either another 
scheme must be evaluated in each particular case based 
on the relative weight of the sizes of each involved do-
main and the possibility of including the temperature 
iterative scheme within an existing iterative process. 
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Figure 3 – solving scheme 

 

C. Model verification 
The fluid dynamic model and the thermal model devel-
oped was validated and used successfully in diverse 
industrial applications (Goldschmit et al, 1999, 2001, 
2003, 2004). 



In this work, only the validation of the coupling be-
tween the fluid dynamic thermal model and the moving 
solid thermal model is presented. 

In the first place, the mapping algorithm was tested. 
For it, two different meshes with different densification 
were generated and it is applied a scalar distribution on 
the contour of a one of them. Then, using the mapping 
algorithm, the scalar is projected onto the other mesh 
contour. The meshes used are shown in Fig. 4. 

 
Figure 4 – meshes used to test the mapping algo-

rithm 
The scalar distribution is applied to the internal con-

tour of the external ring, taking the form 

 )(2 θsenA =  (21) 

In Fig. 5 the comparison between the analytical dis-
tribution and the projected distribution on the external 
contour of the internal ring is shown. 
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Figure 5 – scalar distribution comparison 

 
In the second place, the solid energy equation con-

vective term was tested. The strip circulation between 
two fluid blocks at rest was analyzed (see Fig. 6). 

 
Figure 6 – circulation of strip 

For the fluid domain the velocity was fixed to zero 
and the temperature to Tf. On the solid domain, the ve-
locity was fixed to vs and the inlet temperature was 
fixed to Ts

i. The two domains are meshed with different 
densification. In figure 7 the temperature distribution is 
showed for the whole domain. 

 
Figure 7 – temperature distribution 

 
For this simple example it is possible to compare the 

strip temperature evolution in function of x (considering 
constant temperature in the thickness e) with the analyt-
ical result given by 
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A good agreement between the analytical and the 
numerical strip temperature distribution is observed in 
figure 8. 
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Figure 8 – strip temperature distribution 
 
Finally, a problem of heat conduction was solved 

where the model domain is divided in three subdomains 
(see Fig 9) with independent meshes between them. The 
temperature was fixed at the top and the bottom surface 
of the whole domain. The coupling between the subdo-
mains was achieved applying an equivalent heat transfer 
coefficient at the interfaces dh λ= , where λ is the 
thermal conductivity coefficient and d is the gap be-
tween subdomains. 

Subdomain 1
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Subdomain 2

 
Figure 9 – subdomains 

 
The dimensionless temperature distribution for the 

conduction problem is observed in Fig. 10 
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(b) 

Figure 10 – dimensionless temperature distribution 
 
It is observed that the obtained temperature distribu-

tion correspond to the analytical solution. 
 

IV. INDUSTRIAL APPLICATION 
The developed model was applied to hot dip galvanizing 
process. In the coating bath, the strip passes around a 
submerged roll and then exits the bath in a vertical di-
rection. At the exit point, a set of gas knives (usually 
high pressure air), wipe off excess molten metal, leaving 
behind a closely controlled thickness of molten metal. 
In order to obtain a better understanding and optimize 
the galvanizing processes, it is necessary to know the 
fluid movement as well as the temperature distribution 
in the bath and the strip. 

Gagne y Pare (1992) developed a water model to 
analyze the fluid dynamic behavior of galvanizing bath. 
Numerical models of this process has been published in 
Gagné y Gang (1998), Pare et al. (1995), Kato et al. 
(1995), Ajersch et al. (1998, 2001, 2002), Evans y 
Treadgold (1999), Baril et al. (2001), Mc Dermid et al. 
(2002). These numerical models don’t solve the strip 
temperature distribution despising the bath – strip heat 
exchange. 

A galvanizing pot scheme is showed in figure 11. 
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Figure 11 – pot scheme 

 
Materials properties used to perform the simulations 

were considered constant and corresponding to those of 
melted zinc at a temperature of 460°C reference density 
ρ=6600 Kg/m3, laminar viscosity µ=0.004Pa.s, specific 
heat cp=512J/(Kg°C), thermal conductivity 
λ=60W/(m°C), and thermal expansion coefficient 
β=1.666x10-4 °C-1. 

A. Industrial fluid dynamic simulation 
The fluid dynamic model was applied considering 

the boundary conditions showed in Figure 12. To take 
into account the turbulent effect the MIXL model with 
buoyancy correction was used (Rodi 1980). 
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Wall function

Strip:

Wall function with moving walls

Sink roll:

Wall function with moving walls

 
Figure 12 – fluid dynamic boundary conditions 

 
The velocity module distribution divided by the strip 

velocity Vs is shown in the figure 13. It is observed that 
the higher velocities are concentrated near the strip and 
rolls. 

 

Vel / Vs

 



 
Figure 13 – velocity module distribution 
 

B. Industrial thermal simulation 
The thermal model was applied considering the 

boundary conditions showed in Fig. 14. To model the 
strip temperature evolution a 2D thermal model was 
used. The temperature variation through the strip thick-
ness was not considered. 
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Figure 14 – thermal boundary conditions 

 
In Figure 15, the bath temperature distribution di-

vided by the strip entry temperature Ti
s is shown. It is 

observed that there is an increase of temperature in the 
zone of strip entry due to the important difference be-
tween the strip entry temperature of and the bath aver-
age temperature. In addition, due to the recirculation 
zones located above the sink roll, the dwell time of the 
fluid in this zone causes that the temperatures are great-
er to the average. 

Temp / Ti
s

 
Figure 15 – bath temperature distribution 

 
The strip temperature distribution is showed in fig-

ure 19. It is observed that the strip reaches quickly the 
bath temperature. There is a little temperature variation 
across the strip width due to the cold fluid that returns 
from lateral pot wall. 
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Figure 16 – strip temperature distribution 

 
 

C. Industrial model validation 
 
The validation of the fluid dynamic - thermal numer-

ical model applied to the galvanizing process requires 
the measurement of velocities and temperatures in the 
bath. The velocity measurements present great experi-
mental difficulties. The temperature measurements are 
simpler to make, not presenting great experimental dif-
ficulties, but it is necessary to have special care in cali-
brating the measurement device. In this report, tempera-
ture measurements are used to validate the numerical 
model developed. 

In order to make the temperature measurements, one 
specific thermocouple with the following characteristics 
was made: 

Thermopair: type K (Ni-Cr-Ni) 
Bayonet: stainless steel 316 
1” diameter 
3 mm thickness 
3 m length 
 
Model validation was made with the measurement of 

the time evolution of the temperature at the control 
thermocouple point.  

The time variations of heat resistance power and 
strip entry temperature are shown in the following fig-
ures. 
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Figure 17 – heat resistance power 
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Figure 18 – strip entry temperature 

 
The results of the stationary model were used as an 

initial condition for the transitory model. The strip entry 
temperature and fixed heat fluxes are used as boundary 
conditions. Figure 19 shows the comparison between 
the numerical results and experimental temperature 
measurements at the control thermocouple point. 
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Figure 19 – Comparison between the numerical results 
and experimental temperature measurement at the con-

trol thermocouple point 
The good agreement between the model and the 

measurements can be observed considering the preci-
sion necessary for an industrial model where there is a 
great amount of possible sources of uncertainty: ther-
mocouple time response, heat losses, effective inductor 
heat power and strip entry temperature. 

 

V. CONCLUSIONS 
A fluid dynamic – thermal coupled model was devel-
oped. This model takes into account the movement of 
solid contours and the thermal coupling between the 
different model domains (solid or liquid). The model 
gives the possibility that the different meshes are not 
connected; this generates a great flexibility in meshing 
and in geometry modification. The domains coupling 
algorithm could be validated using simple problems. 
Finally, the model developed was validated and applied 
successfully to the hot dip galvanizing process. 

REFERENCES 
F. Ajersch et.al., “Validation studies of the numerical 

simulation of flow in the Bethlehem Steel, Burns 
Harbour galvanizing bath”, Galvatech’98, Chiba, Ja-

pan, 642, 1998. 
F. Ajersch et.al., “Numerical analysis of the effect of 

operating parameters on flow in a continuous galva-
nizing bath”, Galvatech 2001, Brussels, Belgium, 511, 
2001. 

F. Ajersch, F. Ilinca and J.F. Héter, “Numerical analysis 
of the effect of temperature variation on flow in a con-
tinuous galvanizing bath”, 44th MWSP Conference, 
vol. XL, 863, 2002. 

E. Baril et.al., “Investigation of fluid flow in the snout 
of a continuous galvanizing bath using numerical 
modeling”, Galvatech 2001, Brussels, Belgium, 435, 
2001. 

Bathe K. J., Finite Element Procedures, Prentice Hall, 
1996. 

Brooks and T.J.R. Hughes, “Streamline upwind Petrov-
Galerkin formulations for convection dominated 
flows with particular emphasis on the incompressible 
Navier Stokes equations”, Comp. Meth. in Applied 
Mech. and Engineering, 32, 199-259, (1982). 

K.J. Evans and C.J. Treadgold, “Modeling and mea-
surement of transient conditions in the galvanizing 
pot”, 91st Galvanizer’s Association Meeting, Jackson, 
MS, 131, 1999. 

T.J.R. Hughes and A. Brooks, “A theoretical framework 
for Petrov-Galerkin methods with discontinuous 
weighting functions: application to the streamline-
upwind procedure”, Finite Elements in Fluids, 47-65, 
(1982). 

M. Gagné and M. Gang, “Numerical modeling of fluid 
flow in continuous galvanizing baths”, Galvatech’98, 
Chiba, Japan, 190, 1998. 

M. Gagné, A. Pare and F. Ajersch, “Water modeling of 
continuous galvanizing baths”, 84th  Galvanizer’s As-
sociation Meeting, Pittsburgh, PA, 147, 1992. 

Kato et al, “Dross formation and flow phenomena in 
molten zinc bath”, Galvatech’95, Chicago, IL, 801, 
1995. 

B.E. Launder and D.B. Spalding, “The numerical com-
putation of turbulent flows”, Comp. Meth. in Appl. 
Mech. And Engrg., 3,  269-289, 1974. 

J.R. Mc Dermid, B.M. Maag and M. Gang, “Numerical 
modeling of ingot charching configurations at Pro-
Tec CGL2”, 94th Galvanizers Association Meeting, 
Dearborn, MI, 2002. 

Pare, C. Binet and F. Ajersch, “Numerical simulation of 
3-dimensional flow in a continuous strip galvanizing 
bath”, Galvatech’95, Chicago, IL, 695, 1995. 

R.J. Príncipe and M.B. Goldschmit, “Las condiciones de 
contorno sobre la pared en el modelado de flujo turbu-
lento”, VI Congreso Argentino de Mecánica Compu-
tacional, MECOM’99, Mendoza, 1999. 

W. Rodi, “Turbulence models and their application in 
hydraulics. A state of the art review”, Int. assoc. for 
Hydraulic Research, The Netherlans, 1980. 

Zienkiewicz O.C. , and R.L. Taylor, The Finite Element 
Method.(5th. Edition), Mc Graw Hill, London (2000). 


