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SHORT COMMUNICATION
A FOUR-NODE PLATE BENDING ELEMENT BASED ON
MINDLIN/REISSNER PLATE THEORY AND :
A MIXED INTERPOLATION

KLAUS-JURGEN BATHE! AND EDUARDO N. DVORKIN?
Massachusetts Institute of Technology, Cambridge, Massachusetts, U.S.A.

SUMMARY

This communication discusses a 4-node plate bending element for linear elastic analysis which is obtained, as
a special case, from a general nonlinear continuum mechanics based 4-node shell element formulation. The
formulation of the plate element is presented and the results of various example solutions are given that yield
insight into the predictive capability of the plate (and shell) element.

INTRODUCTION

Since the development of the first plate bending finite elements, a very large number of elements has
been proposed.’™® These elements are usually developed and evaluated for the linear analysis of
plates, but it is frequently implied that the elements can ‘easily’ be extended to the geometrically
nonlinear analysis of general shell structures.

Our experiences are different. We believe that it can be a major step to extend a linear plate
bending element formulation to obtain a general effective shell element, and with some plate
element formulations this extension is (almost) not possible. Therefore, to obtain a general 4-node
nonlinear shell element, we have concentrated directly on the development of such an element. As a
special case, the shell element will then reduce to a plate bending element for the linear elastic
analysis of plates.

Some results of our efforts to develop a general 4-node shell element were presented earlier.* Our
objective in this communication is to show how the general continuum mechanics based shell
element formulation of Reference 4 reduces to an attractive plate bending analysis capability, and
to give some more insight into our shell element formulation.

Considering the use of our shell element in the linear analysis of plates, there are at least two
closely related plate bending element formulations—those presented by MacNeal® and by Hughes
and Tezduyar®—and there may be others because of the extensive recent developments— and the
many possibilities—in displacement-based, hybrid and mixed formulations of linear plate bending
elements.

Since our objective is to present a plate bending element formulation that is a special case of a
general nonlinear 4-node shell element formulation,* it is valuable to review briefly some thoughts
that led to the development of the shell element. Our experience is that the high-order 16-node
isoparametric degenerate shell element and the 3-node triangular discrete Kirchhoff plate/shell
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element evaluated in References 7 and 8, are quite effective, but in some respects—for example, the
cost and distortion sensitivity of the 16-node element and the low-order membrane stress
predictive capability of the 3-node element—improvements are very desirable. We concluded
therefore that it would be valuable to try to develop an efficient 4-node quadrilateral shell element
based on the concepts of the degenerate isoparametric shell elements, the discrete Kirchhoff theory
and the use of reduced constraints.>*® The element should satisfy the usual isotropy and

convergence requirements,> and more specifically:

1. The element should be formulated without use of a specific shell theory so that it is applicable to
any plate/shell situation.

2. The element should not lock in thin plate/shell analyses.

3. The element should not contain any spurious zero energy modes.

4. The formulation should not be based on numerically adjusted factors.

5. The element should have good predictive capability for displacements, bending moments and
membrane forces!, and be relatively insensitive to element distortions.

6. The element should be simple and inexpensive to use with, for shell analysis, five or six
engineering degrees-of-freedom per node, and for plate analysis three degrees-of-freedom per node.

As discussed in Reference 4, the essence of our element formulation lies in the separate
interpolation of the transverse displacements/section rotations and of the transverse shear strains.
The displacements and rotations are interpolated as usual, but for the transverse shear strains, the
covariant components measured in the natural co-ordinate system are interpolated.

In the following sections, we first summarize the plate bending element formulation obtained
from our general shell element formulation, and then briefly discuss its characteristics measured on
the above objectives. This discussion includes the presentation of a number of analysis results on
the problems that were considered by Batoz and Ben Tahar? in their evaluation of quadrilateral
plate bending elements’. This valuable reference contains a discussion of a large number of plate
elements and may be used in a study of the results presented below.

FORMULATION OF THE ELEMENT

The plate element obtained from our general 4-node shell element is based on the Mindlin/Reissner
plate theory and represents an extension of the formulation given in Reference 2, pp. 251-255. As
presented there, the variational indicator of a Mindlin/Reissner plate is, in linear elastic static

analysis,

1 1
= ;J‘ k"CoxdA + —J‘ y'C,ydA _.[ wpdA (1)
“JA 2 A A
where
B,
0x
ap,
) ) 1Y 2
K ay (2)
%B. _2f,
dy 0%

fAn element with high predictive capability in transverse shear forces also, can probably be obtained by applying the

procedures given in this paper and in Reference 4 to a higher-order element.
*We have chosen not to compare our element to any other specific element, because ‘which one to choose?
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and, with reference to Figure 1, B,, B, are the section rotations, w is the transverse displacement of
the mid-surface of the plate, p is the distributed pressure loading, h is the thickness of the plate
(assumed constant) and A is the area of the mid-surface of the plate. Also, E is Young’s modulus, v is
Poisson’s ratio and k is a shear correction factor (appropriately set to 5/6).

Perhaps the simplest way to formulate an element based on the variational indicator IT in
equation (1)is to interpolate both the transverse displacements and the section rotations as follows:

q
w=) hw, B,= i h0L.7 B, = i h, 0% (5)
i=1 iF1 i=1
where the w;, 8 and @, are the nodal point values of the variables w, f, and f,, respectively, the
h{r,s) are the interpolation functions and g is the number of element nodes. A basic problem
inherent in the use of the above interpolations is that when ¢ is equal to four, see Figure 2, the
element ‘locks’ when it is thin (assuming ‘full’ numerical integration). This is due to the fact that
with these interpolations the transverse shear strains cannot vanish at all points in the element
when it is subjected to a constant bending moment. Hence, although the basic continuum
mechanics equations contain the Kirchhoff plate assumptions, the finite element discretization
is not able to represent these assumptions rendering the element not applicable to the analysis of
thin plates or shells (see Reference 2, p. 240). To solve this deficiency, various remedies based on
selective and reduced integration have been proposed, but there is still much room for a more
effective and reliable approach.

To circumvent the locking problem, we formulate the element stiffness matrix in our approach
by including the bending effects and transverse shear effects through different interpolations. To
evaluate the section curvatures, x, we use equation (2) and the interpolations in equation (5).
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Figure 1. Notation used for Mindlin/Reissner plate theory
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Figure 2. Conventions used in formulation of 4-node plate bending element: h, =4(1 +r)(1 +5), hy, =31 —r)(1 +3),
hy=31—r)(1—5), hy =41 4+ 1r)(1 —5)

Hence, the element section curvatures are calculated as usual;? however, to evaluate the transverse
shear strains we proceed differently.

Consider first our element when it is of geometry 2 x 2 (for which the (x, y) co-ordinates could be
taken to be equal to the (r,s) isoparametric co-ordinates). For this element we use the
interpolations

Yee =31 + 8y +3(1 —sh5 (6)
Y =31+ +3(1 —1ys

where y2, ¥, y2 and yZ are the (physical) shear strains at points 4, B, C, and D. We evaluate these
strains using the interpolations in equation (5) to obtain

- 1 2 L\ 4 3
y,;=%u+s)[“" 2“’2+"" ;9,]%“_3)[%»3&;@] (7a)
and
e wimwe GeHO2] i [ Wamws 646
}u—ﬂtm[ > — [+41=n| 225 - (7b)

With these interpolations given, all strain—displacement interpolation matrices can directly be
constructed and the stiffness matrix is formulated in the standard manner (see Reference 2, p. 252).
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Considering next the case of a general 4-node element, we use the same basic idea of
interpolating the transverse shear strains, but—using the interpolation of equation (6)—we
interpolate the covariant tensor components measured in the (r, s) co-ordinate system. In this way
we are directly taking account of the element distortion (from the 2 x 2 geometry). Proceeding this
way with the tensor shear strain components we obtain—as shown in Appendix I—the following
expressions for the y,, and y,, shear strains:

Vxz = YreSiDf — 7, sin 0t (8a)
Yyz= — ¥rz €08 B+ 7, cOS 1 (8b)
where o and f are the angles between the r- and x-axis and s- and x-axis, respectively, and
I, +7BY +(C, +rB)*]

S 8 detJ
‘{(1 +s)[“"" e e e +9§)~(y‘%y2)(9; + ef)] (9a)
+Q —s)[w‘;w3+x 4x3f94+93)—( y3)(9‘+93)}}
_[(A,+ 5B, + (A, +5B,)*]
™ 8 detJ
{{1 +i')|:(WI ; W-t) +X1 ;xd. (9;, 3 9;_)_(}’1 ;yd-}(ei +9:)] (9b)
i {1 = r) [(Wz ; w.a) + 3} (92 p 93} y3)(92 It 93)]}
In equations (9a) and (9b) we have
ox 2y
or or
det J = det ﬁv‘f @
ds . 0s

and

Ax=x1 —X3— X3+ X4

B,=Xx; —X5+Xx3—X4

Cr=x1+x2-x3—x4 {10}

Ay=y1—y2—y3+Ys

By=y;—ya+ys—

Cy=y1+Y2—V3—Va

The formulation of the element can be regarded as a mixed formulation, in which the section

rotations and transverse displacements are interpolated as given in equation (5), the curvatures are
calculated using equation (2) and the shear strains are interpolated as shown above. In the
interpolation, the intensities of the transverse shear strains are at the points A, B,C and D

constrained to equal the transverse shear strains evaluated using equation (5). The element
formulation can also be interpreted as based on a reduced penalty constraint between the
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transverse displacements and the section rotations, or the element can be viewed as based on a
‘discrete Mindlin/Reissner theory’.

ELEMENT CHARACTERISTICS

Based on our studies, we find the following important element properties (assuming ‘full’ numerical
integration over r and s):

1. The element is able to represent the three rigid modes. The element contains the three rigid body
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Figure 3. Patch test. A patch of elements is considered in the load cases shown; the patch test is passed
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Figure 4. Simply-supported circular plate subjected to constant temperature gradient through the thickness. Four
degenerated quadrilateral elements are used to model one-quarter of the plate. The finite element solution provides: (a) zero
percent error in centre displacement; (b) zero stresses, coincident with the analytical solution
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Figure 5. Cantilever subjected to tip bending moment. In both cases, the finite element solution for the displacements and
rotations at the cantilever tip and for the stresses is coincident with the Bernoulli beam theory solution

modes because zero strains are calculated when the element nodal point displacements and
rotations correspond to an element rigid body displacement, see equations (2)—(8).

2. The element contains no spurious zero energy modes. If the element were to contain a spurious
zero energy mode, the strains along every side should vanish for a displacement pattern (to be
identified) other than those corresponding to a true rigid body mode. However, such displacement
pattern was not identified.

3. The element passes the patch test and is applicable to the analysis of very thin plates (it does not
‘lock’). See numerical solutions in Figures 3—11.
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compared with the Kirchhoff plate solution
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Figure 9. Bending moment distributions for thin simply-supported plate (L/h = 1000) under uniform pressure. The
parameter of distortion, A, is equal to L/40

As regards the numerical integration we find that, even when the element is highly distorted, 2 x 2
standard Gauss integration is adequate.

We have implemented the above element formulation by simply expanding the computer
program QUADS given for plane stress analysis in Reference 2, p. 295. The complete program for
the stiffness matrix calculations consists of about 150 lines.

Figures 3—11 show some analysis results obtained with our element. In these studies we consider
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Figure 10. Effect of mesh distortion on results in analysis of a thin simply-supported plate under uniform pressure
(L/h = 1000)
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Figure 11. Analysis of a curved plate when subjected to a unit load at A (first load case), a unit load at B (second load case)
and a unit load at C (third load case). The finite element results are compared with the analytical results obtained in
Reference 11. The symbol O represents the results of mesh I, and the symbol + represents the results of mesh II
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Figure 12. Large deflection elastic—plastic analysis of a cylindrical shell under constant vertical pressure loading per unit of
projected area on the horizontal plane. In Reference 12 the solution (coincident with the present solution)is reported up to
wp=125

only thin (and very thin) plate situations, in order to demonstrate the applicability of the element to
such analyses, but the element can also be used for the analysis of moderately thick plates.* The
results show the convergence behaviour of the element in some problems and the effect of element
distortions.

An important characteristic of the element is that it can only represent a constant bending
moment exactly— but does so even when the element is highly distorted (see Figure 5). Therefore,
to predict stress resultants accurately, a relatively fine mesh is needed in areas with large stress
gradients (see Figure 11 for the load at point B).

Finally, to emphasize that this research was actually conducted to obtain a general nonlinear
shell element, we present in Figure 12 the results of a geometric and material nonlinear shell
solution obtained using the non-flat shell element of Reference 4.

CONCLUDING REMARKS

Our objective in this communication was to present in a compact manner a 4-node plate bend-
ing element that is obtained, as a special case, from a general 4-node shell element, and give further
insight into the formulation of Reference 4. The continuum mechanics based approach used in the
formulation has also much potential for the development of curved higher-order shell elements for
general nonlinear analysis. These elements should also reduce to what should be attractive higher-
order linear plate bending elements.
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APPENDIX I: DERIVATION OF TRANSVERSE SHEAR INTERPOLATIONS

In the natural co-ordinate system of the plate bending element, the covariant base vectors are
defined as'?

0x 0x
= — = — 11:
gr ar.‘ g.i as { d)
h
g.=7€; (11b)

where x is the vector of co-ordinates, x = xe, + ye,, and thee; are the base vectors of the Cartesian
system.
The contravariant base vectors g' are defined by the following expression:

g-g; =95 (12)

where the 5j- are the mixed components of the Kronecker delta, and the i, j vary over r, s, z.
The following relations also hold:

9ij=8:i"8; (13a)
9'=12aa 37 (1%

where D" is the cofactor of the term g;; in the 3 x 3 matrix of the metric tensor.
In the natural co-ordinate system, the strain tensor can be expressed using covariant tensor
components and contravariant base vectors,

£=¢,8'¢g (14)

where the tilde ( ~ ) indicates that the tensor components are measured in the natural co-ordinate
system.

To obtain the shear tensor components we now use the equivalent of equation (6),
& =31 + 88 + 31— 9), (15a)
E: =3(1 +1)&g + (1 — ). (15b)

where &, ¢, &7, and &, are the shear tensor components at points 4, B, C and D. These quantities
are evaluated using the linear terms of the relation'?

- 1

8= _[1g:"lgj = Ugi'ogj] (16)

where the left superscript of the base vectors is equal to ‘1’ for the deformed configuration and equal
to ‘0’ for the initial configuration. Substituting from equations (11) and equation (5) we obtain

e & h S, & N ; x
5e=7 2-{wl —w,y)+ 4{)‘: — x,)(0; + 0;) - 4[}-‘1 — y)(0; + 67) (17a)

and

1| h h h
&= Z(fitw* —wy) + ilx“ _ x3)(8j + U;?} L&-[y‘, ~ y3)(0F+ Ui]] (17b)
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Therefore, using equation (15a) we obtain

h h h
g.=3(1+ SJI:E(WI —w,) + Z(Jﬁ o x;)(ﬁ}, + 9,2,}—1(}’1 —y,)(01 + 63}]

h h h
+3(1 - S)I:E(W‘t —w3)+ Z(X"' —x3)(05 + 67) — Z(h — ya)(0% + 93)] (18a)

and in the same way

h h h
& =%(1+ r)[E(WI — Wy) ‘J‘Z{xl — x4)(0; + 9;)—3()’1 — y4)(0; + 9:):|

h h h
e r)|:§(wz —w3) + 7002 = x3)(6] +67) — 702 — y3) (6; + 852}] (18b)
Next we use that

g jgigj = Ex€i € (19)

where the ¢, are the components of the strain tensor measured in the Cartesian co-ordinate system.
From equation (19) we obtain

Vxe = 26,8 €,)(87-€.) + 2£,.(8"-e.)(g" e.) (20a)

Vyz = 28,87 -¢,) (g7 ¢.) + 22,.(g"-¢,)(g"-¢.) (20b)
But

g = \/gF(sin pBe.—cosfie,) (21a)

g =./g"(—sinae, +cosae,) (21b)

= Ay (21c)

where o and f are the angles between the x- and r-axis and x- and s-axis, respectively.
Also, using equations (13)

rr

_(C,+rB)* +(C, +1B)’
16(detJ)?
_A+ sB,)* + (A, + sB))?
16(detJ)?
where the 4,, B,, C,, A,, B, and C, are defined in equations (10), and

et
= W (22¢)

(22a)

35

(22b)

Substituting from equations (18), (21) and (22) into equations (20), the relations in equations (8) are
obtained.
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