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Abstract. The modeling of strain localization requires the use of different scales to
describe the evolution of the material of the overall structure and the material inside the
localized region. Focusing on the Gurson-Tvergaard-Needleman material we develop a
multiscale formulation that uses strong discontinuity modes to model the development of
a localization zone and the material degradation and void growth inside it. We present a
strong discontinuity mode formulation able to capture the band kinematics that consists
of a combination of sliding and opening modes. Then we derive an heuristic inter-scale
factor to set a proper connection between the localized and the continuum scales.

This approach describes the evolution of the accumulated plastic strain and the void
content inside and outside the localization band. The localization scale evolution is ef-
fectively controlled by the proposed heuristic rule. To illustrate on the formulation ca-
pabilities, a test case is presented and the behavior of the inter-scale connection factor
is analyzed. The resulting formulation does not require a specific mesh refinement to
model strain localization, provides mesh independent results and can be calibrated using
experimental results.

1 INTRODUCTION

The Gurson-Tvergaard-Needleman plasticity model1–5 incorporates to the standard
J2 plasticity model the material degradation that is due to the nucleation, growth and
coalescence of voids. This material model is usually used for modeling ductile fracture
phenomena, where the void content is used as an indicator of crack initiation.
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Most ductile fracture processes are preceded by a strain localization, that takes place
in a narrow band shaped region. In most cases the band width results much smaller than
the problem domain, therefore forcing the two opposing sides of the region to open and/or
slide relatively to each other (depending on the material considered). This inserts in the
problem domain a kinematic mechanism that conditions its response.

Due to that, the modeling of strain localization phenomena via finite element formu-
lations requires to use different scales for the description of the global deformation in
the continuum and the localized deformation inside the localization bands and to use of
physically meaningful laws to describe the evolution of the material inside the latter ones.

These issues have been addressed in the literature by many numerical techniques: the
enhanced strain field method6,7 the extended finite element method (X-FEM),8,9 the
strong discontinuity approach10 and the embedded strong discontinuity modes.11,12 The
last two techniques were applied in the framework of G-T-N materials13,14

2 THE G-T-N MATERIAL MODEL

The Gurson plasticity model was first developed by Gurson.1,2 It has been modified
through time to adjust the model parameters3,4 and received new inclusions like the
addition of a void coalescence mechanism.5 The complete set is known as the Gurson-
Tvergaard-Needleman (G-T-N) material model. Herein we recall the equations required
for the present development.15

The G-T-N yield surface, tΦ, depends on the hydrostatic stress, t¾ℎ, the J2 equivalent
stress t¾e , the volume void fraction, tf, and the actual yield stress,t¾y,

∗
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t¾ : tg, (2)

t¾e =

√
3

2
ts : ts, (3)

being ts the deviatoric stress tensor and tg the metric tensor. The parameters q1 and q2
were set to fit the experimental results. We adopt q1 = 1.5 and q2 = 1 for the present
study.

During yielding tΦ = 0; hence we can obtain an equivalent stress that takes into account
the void effect,

t¾̄2 = t¾y
2
(
1 + tf 2 q21 − 2 tf q1 cosh

(
t®
))

(4)

∗We indicate the tensorial product between two tensors as a b (in other references it is indicated as
a
⊗

b) and the number of underlines indicates the tensor order.
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For the evolution of t¾y we adopt an implicit hardening law from,15

t¾y

0¾y

=

(
t¾y

0¾y

+
3 G
0¾y

t"̄P
)N

(5)

where 0¾y is the initial yield stress, t"̄P is the equivalent plastic strain (to be defined in
Eqn. (11)), N is the hardening exponent and G is the elastic shear modulus.

The increment of void volume fraction is attributed to:

∙ Growth of existing voids driven by the bulk plastic deformation,

df growtℎ =
(
1− tf

)
d"P : tg. (6)

∙ Nucleation of new voids driven by the accumulated plastic strain evolution,16

dfnucleation = tA d"̄P (7)

with:

tA =
fN

SN

√
2¼

exp

[
−1

2

(
t"̄P − "N

sN

)2
]
, (8)

where, fN is the void volume fraction of nucleation particles, SN its standard devi-
ation and "N the mean strain for void nucleation. We adopt sN = 0.1, fN = 0.04
and "N = 0.3.

∙ Coalescence of voids is modeled by modifying tf once a critical void fraction,
fCritical, is reached.

5

The evolution of the internal variables, tf and t"̄P , of the G-T-N material depends
on the volumetric

(
"Pℎ

)
and distortive

(
"Pe

)
equivalent plastic strains. Those equivalent

strains are defined decomposing the plastic strain increment as follows,

"P = t+Δt"P − t"P =
1

3
"Pℎ

t+Δtg + "Pe
3

2

ts
t¾e

, (9)

Hence the increment between t and t+Δt of the void volume fraction and the equivalent
plastic strain becomes,

t+Δtf − tf = f =
(
1− t+Δtf

)
"P : t+Δtg + t+ΔtA "̄P , (10)

"̄P = t+Δt"̄P − t"̄P =
t+Δt¾ℎ "Pℎ + t+Δt¾e "

P
e

(1− t+Δtf) t+Δt¾y

. (11)
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3 FINITE ELEMENT FORMULATION

3.1 Displacement and strain decomposition

We solve the nonlinear elastoplastic problem using an incremental procedure where we
decompose the strain and displacement increments from time t to time t+Δt as,

t+Δt" = t"+ " ∧ t+Δtu = tu+ u,

and discretize the continuum using the standard element shape functions,17 H, and the
nodal displacements, U,

u = H t+ΔtU−H tU = HU.

At the elements where the localization indicator triggers a discontinuity, we decompose
the displacement field into continuous and localized contributions,11,12

u = ucontinuum + ulocalized = H Ucontinuum +H Ulocalized (12)

Assuming infinitesimal strains analysis, we also decompose the deformation increment
into elastic and plastic components. Since we assume the localization behaves as rigid-
plastic, the elastic deformation only contributes to the continuum scale, and the plastic
deformation contributes to the continuum and to the localized scales. Hence,

" = "E + "P = "E
continuum

+ "P
continuum

+ "P
localized

. (13)

The displacement ulocalized has to be designed as to reproduce the localized deformation
kinematics, thus we adopt,11

ulocalized = H Ulocalized = H ° Θ (14)

where Θ are the nodal displacements corresponding to the strong discontinuity mode to
be defined later in this work and ° is the increment of a scalar parameter which is part
of the problem unknowns. The evolution of this parameter is written as,

t+Δt° = t° + °. (15)

Replacing Eqn. (14) into Eqn. (12) results,

u = H U = H (U− ° Θ) +H° Θ. (16)

Thus the resulting strain fields, using Voight notation, are,

"continuum = "Econtinuum + "Pcontinuum = B (U− ° Θ) (17)

"localized = "Plocalized = B Ulocalized = B ° Θ (18)

were B is the adopted element strain-displacement matrix.
Summarizing this derivation, we now can build a strong discontinuity mode,Θ, that can

generate a localized displacement field ulocalized with a related strain field strain "Plocalized.
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Figure 1: Continuous with an active localization.

3.2 Localization definition

A localization line in plane problems can be characterized by a line with normal tn and
a propagation direction tm along which the displacement jump,19 ulocalized, is found (i.e.
if tn ∥ tm =⇒ the kinematics is Mode I and if tn ⊥ tm =⇒ the kinematics is Mode
II). In Fig. 1 we draw a schematic representation of the above definitions, considering a
general displacement jump; the band has no width.

To describe the induced localization strain we use the Maxwell conditions, so we ne-
cessitate that the discontinuity jump satisfies,6

∇ ulocalized = ° tn tm

where ° is a scalar increment of the discontinuity jump. Hence the strain jump becomes,

"P
localized

=
1

2
°
(

tn tm+ tm tn
)

(19)

3.3 Bifurcation analysis

It has been shown18,19 that the triggering of bifurcation in the material behavior and
the respective band orientation can be determined from the singularity of the acoustic
tensor, which is defined as,

tQ = tn ⋅ tCEP⋅ t
n (20)

where tCEP is the constitutive tensor.

The bifurcation condition requires that,6,18

tQ ⋅ tm =

(
tn ⋅ tCEP⋅ t

n

)
⋅ tm = 0 (21)

what is satisfied when,

det
(

tQ
)
= det

(
tn ⋅ tCEP⋅ t

n

)
= 0. (22)
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Figure 2: Base of modes for a 9-node element in the isoparametric element space.

Eqn.(22) implies that at least one of tQ eigenvalues to be zero and the respective

eigenvector tm to be the band growth direction according to Eqn.(21). Since it is difficult
to precisely determine when Eqn.(22) is satisfied during an incremental procedure we use,6

det
(

tQ
)
= det

(
tn ⋅ tCEP⋅ t

n

)
≤ 0 (23)

and the growth direction can be obtained from the eigenvector tm belonging to the small-
est eigenvalue of tQ.

3.4 Strong discontinuity modes definition

To build a strong discontinuity mode, tΘ, able to model the localization when scaled
by °, we use a base of displacement modes, tΨA, constituted by two shear modes and a
volume change mode11,12,14 . Subindex A = I...III indicates the deformation mode.

To construct each of them, we use three different sets of nodal coordinates, tΦA, and
the unstrained nodal coordinates

(
rk, sk

)
and build them as,

tΨk
A =

[(
tΦk

A

)
r
− rk

]
er +

[(
tΦk

A

)
s
− sk

]
es. (24)

In the above equation (er; es) are orthonormal base vectors shown in Fig.2 along the
(r, s) natural directions and the upper index k = 1...N indicates the node. As an il-
lustrative example we plot the displacement modes in the element isoparametric space
coordinates (r,s) for a 9-node element in Fig.2. To complete the definition we generalize
Eqn.(24) in the (x1, x2) structural coordinate system using the element shape functions
ℎj,

tΨk
A =

[
ℎj

((
tΦk

A

)
r
,
(
tΦk

A

)
s

)
xj
i − xk

i

]
ei . (25)

With this displacement modes, tΨA, we compute their respective strains at the element
center,

"A = Bc
tΨA (26)
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Figure 3: Continuous with an active localization band

where Bc is the strain-displacements matrix calculated at the element center. By linearly
combining the above defined strain fields we obtain the "Plocalized defined in Eqn. (19),

"Plocalized = ¯I"I + ¯II"II + ¯III"III ., (27)

where ¯A parameters have to be determined.
Therefore the modes tΨA can also be linearly combined and normalized to get the

localization strong discontinuity mode, tΘ,

tΘ =
¯I

tΨI + ¯II
tΨII + ¯III

tΨIII

∣¯I
tΨI + ¯II

tΨII + ¯III
tΨIII ∣

(28)

3.5 Element equilibrium equations

We apply the virtual work principle in order to obtain the finite element equations. In
Fig. 3 we show a scheme of a solid with a localization line and the localization line forces
(band forces). For the equilibrium at time t+Δt we get,
∫

V

± ["continuum]
T t+Δt¾continuum dv + ± [Ulocalized]

T t+ΔtFlocalized =

∫

S

±uT t+Δtp ds. (29)

Replacing Eqns. (12), (14) and (17) into Eqn. (29) and since ±U and ±° are arbitrary
we obtain set of equations12 that has to be solved iteratively; therefore, a Newton-Raphson
scheme is implemented at the global level. The parameters ° are condensed at the element
level.

The only undefined variable is t+ΔtFlocalized for which we propose11 that,

tΘT t+ΔtFlocalized

tΘT tFlocalized

=
t+Δt¾̄localized

t¾̄localized

, (30)

where the localization equivalent stress t+Δt¾̄localized is unknown. To calculate it, we relate
the localization volumetric and distortive equivalent plastic strains to the band incremen-
tal parameter °, through a set of positive factors ³ and '. These factors relate the
continuum and the localization scales. Hence,

(
"Pℎ loc

)2
= ³2°2 , (31)
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Figure 4: Scheme of a band in a localized element

(
"Pe loc

)2
= '2°2. (32)

To determine the inter-scales factors we request the distortive dissipated energy in the
band to be equal to the energy dissipated by the distortive part of the localization mode.
For this we calculate a purely distortive strong discontinuity mode, tΘd, as was done for
the localization mode tΘ, hence,

∫ t+Δt°

t°

ΘT
e

¿F d° =

∫

Vloc

∫ t+Δt"Pe loc

t"Pe loc

¿ ¾̄loc d"
P
e loc

dVloc . (33)

The same reasoning is applied to the hydrostatic contribution, but with the volumetric
strong discontinuity mode, Θℎ.

To solve Eqn.(33) and the respective volumetric equations, we construct an heuristic
rule for what we depict in Fig 4 an element shaped domain that has a localization line
across it. The localization line splits the domain in two subdomains that slide along the
localization line. Assuming unitary thickness, the volume of material comprised in the
localization is,

Vloc = ℎ L, (34)

where ℎ is a reference bandwidth and L is the band length across the element.
Using in Eqn.(33) an Euler backward time integration scheme together with Eqn. (34)

and the corresponding volumetric equations leads to,

° tΘT
e

t+ΔtF = t+Δt¾̄loc "
P
e loc

ℎ L , (35)

and
° tΘT

ℎ
t+ΔtF = t+Δt¾̄loc "

P
ℎ loc

ℎ L . (36)
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Figure 5: Test case notched sample

Replacing "Pe loc
and "Pℎ loc

definitions into Eqns. (31) and (32) we get the inter-scales
factors,

' =

∣∣∣∣
tΘT t+Δt

e Floc

ℎ L t+Δt¾̄loc

∣∣∣∣ , (37)

³ =

∣∣∣∣
tΘT t+Δt

ℎ F

ℎ L t+Δt¾̄loc

∣∣∣∣ . (38)

Now that a proper scale is defined for the band strains, we determine "Pℎloc
and "Peloc

from Eqns. (31) and (32). Finally we determine the internal variables increments using
Eqns. (5), (10) and (11), and replace them into Eqn. (4) to get t+Δt¾̄localized .

The ℎ parameter is added in Eqn. (34) to incorporate a regularization that takes into
account the strain concentration inside the band. It is a bandwidth yet not a physical one.
It can be interpreted as the width a band should have in order to have uniform strains
inside the band with the same overall effect to the continua. This allows for parameter h
to control the unloading path of the structure, as it is shown in the next section.

4 NUMERICAL EXAMPLE

To test our finite element formulation we use a plane strain pure traction test. A
specimen with a central notch, used to fix the initiation of the localization, is considered
as shown in Fig. 5. The element adopted for the analysis is a 4 node quadrilateral
with mixed interpolated tensorial components (QMITC4)20,21 and due to the specimen
symmetry only one quarter is modeled. For time evolution we use imposed displacements
with automatic time stepping up to a 4% of elongation. To focus on strain localization
and not in material fracture or crack opening phenomenon, the analyzes are stopped when
tf grows beyond 2/3. The material parameters are set to E = 200GPa, ¾y = 600MPa.
Nor initial void volume fraction nor hardening are considered.
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Figure 6: Load displacement results

Figure 7: tfloc and t²̄Ploc for some meshes

Two mesh densities are analyzed each for two h parameters (Eqn. 34) are used. In
the load-displacement plot shown in Fig. 6 it can be seen that the use of a continuous
formulation (standard finite elements) leads to mesh dependent results, while the use of
the present formulation shows no mesh dependency. The parameter h has the role of
scaling the material deterioration inside the band, thus controlling the load downslope.
Sample band plots of the tfloc and

t²̄Ploc variables are shown in Fig. 7.

5 CONCLUSIONS

We have applied the strong discontinuity modes formulation11,12,14 for modeling strain
localization in G-T-N materials. The required inter-scales connection, between the con-
tinuum and the localization scales is achieved using an equivalent dissipated work criteria
distinguishing between distortive and volumetric contributions. We introduced a length-
scale (h) to heuristically model the material damage evolution inside the band. This
h-parameter controls the damage-induced unloading behavior and therefore it can be de-
termined from actual experimental data. The resulting formulation does not require a
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specific mesh refinement to model a localization, provides mesh independent results and al-
lows the control of the downslope part of the load-displacement path via the h-parameter.
The actual implementation uses the same order of the Gauss integration required for cal-
culating the element stiffness matrix and does not introduce extra d.o.f. in the assembled
numerical model.

We gratefully acknowledge the support of TENARIS and ITBA for this research.
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