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Abstract

In this paper we discuss the …nite element models that we developed for
simulating several processes used for the production of ‡at steel products
(plates and coils). In particular we discuss the modeling of steel continuous
casting processes and of hot rolling processes.

1 Introduction
The …rst requirement for the development of a successful set-up and tight con-
trol of a production process is to have an in-depth knowledge of the process
technological windows ; that is to say, of the locus in the space of the process
control variables, where the resulting products meet their speci…cations.

The task, that we face as engineers, is to quantify those technological win-
dows. The possible ways for this quanti…cation are:

² Industrial observations and measurements performed in situ, on the pro-
cess that is being analyzed. This is a costly route because it involves using
industrial installations as research labs. It is also very di¢cult in an indus-
trial process to separate the e¤ect of the di¤erent variables, because often
it is not possible to make changes in one operational variable, keeping the
rest of them constant.

² Lab scale models. It implies measuring on reduced scale models and after-
wards translating the measurement results to the actual scale. This is also
a costly and cumbersome route, since most of the physical phenomena to
be quanti…ed are nonlinear and it is not always possible to identify simple
similarity relations.

² Computational models.
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Computational models are nowadays a powerful and reliable tool for simu-
lating di¤erent thermo-mechanical-metallurgical processes; hence, they are in-
creasingly being used to investigate the technological windows of di¤erent pro-
cesses in the steel industry, such as continuous casting, hot and cold rolling,
heat treatments, etc. ([1] to [12]).

Since technological decisions, with high in‡uence on the ecological impact
of industrial facilities, on labor conditions and on revenues, are reached based
on the results provided by numerical models, it is evident that these models
have to be highly reliable. Therefore, it is of the highest importance that sound
computational mechanics formulations are used [13], [14] and that the model
results are subjected to experimental validation using either industrial or lab
measurements.

In the development of computational models we have to recognize three
di¤erent levels:

² The identi…cation of the physical problem that is going to be analyzed
and the isolation of its most relevant features. Here we have to make
important decisions on which aspects of the process physics are relevant
and, therefore, need to be considered in the model, and which aspects are
not.

² The formulation of the mathematical model, usually in the form of a PDE
system with its proper domain de…nition, boundary and initial conditions,
etc. In this level we introduce hypotheses about the material response,
about the friction description, etc. It is important that when an engineer
analyzes the results provided by the mathematical model she/he checks
the adequacy of those hypotheses.

² The formulation of a numerical model. In most cases the PDE system
developed in the previous step cannot be solved in closed form; hence, it
is necessary to get approximate solutions using a numerical method. In
this paper we will focus on the …nite element method.

A typical installation for manufacturing ‡at steel products (coils) is com-
posed by a blast furnace (BF), a basic oxygen furnace (BOF), a continuous
casting process and a hot rolling mill. Downstream the above facilities there is
usually a cold rolling mill, annealing facilities, coating facilities, etc.[15]

The objective of this paper is to illustrate on actual industrial applications in
which coil steel production processes are simulated using …nite element models.
For this purpose, in the second section we discuss the modeling of a continuous
casting installation for steel slabs, in the third section we discuss the modeling
of a hot rolling process and in the fourth section we discuss the constitutive
relations that we use for simulating hot metal forming processes.
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2 Modeling of the continuous casting process
Nowadays almost 90% of the world steel production is being produced in con-
tinuous casting installations [16], therefore this is a technology with a very high
economical impact.

A schematic representation of a continuous casting installation for steel slabs
is shown in Fig. 1, where we can identify the following sequence:

1. The liquid steel is poured into a copper mold which is refrigerated with an
external water jacket. The cooling of the steel and its solidi…cation inside
the mold progresses from the outside to the inside; therefore the external
solidi…ed steel shell increases its thickness as the steel strand transits the
mold.
The physical process inside the mold is quite complex because the solidi-
…ed steel shell and the mold are strained due to thermal and mechanical
loads (ferrostatic pressure). While at the meniscus the steel is in contact
with the mold internal surface, downstream a gap is opened between the
strand and the mold and therefore there is more resistance to the heat
exchange. However, in some cases, the mold is shaped so as to regain its
contact with the strand at its lower sections.
Usually the slab molds are equipped with thermocouples located through
the thickness of its copper plates, the indications of these thermocouples
are the input to a heuristic algorithm that provides break-out alarms.
The mathematical description of the heat transfer between the strand and
the mold requires a model that couples the heat transfer equations with
the description of the mold thermo-mechanical deformations.
An alternative procedure is to use an empirical law that describes the heat
‡ow between the steel strand and the mold, e.g. the Savage-Pritchard [17]
equation and its modi…cations proposed by Brimacombe and coworkers
[18]. It has been shown that this empirical approach may introduce im-
portant deviations between the model predictions and the actual temper-
atures distribution (see section 2.1.2).
Another alternative, that we develop in the present paper, is to use the
indications of the mold thermocouples to evaluate, via an inverse analysis
procedure, the heat transfer coe¢cients that govern the thermal process
in the mold; in this way an uncoupled heat transfer analysis can be per-
formed.

2. The steel strand exits the mold and continues its solidi…cation. The dis-
tance, measured along the slab centerline, between the meniscus and the
section at which the strand solidi…cation is completed is called the “metal-
lurgical length”.
After exiting the mold the steel strand is cooled with water jets and also
by interchanging heat with refrigerated guide rolls.

In our Ref.[19] we developed the computer system CCAST composed by two
modules:
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² The module CCAST-D, which is a …nite element code that, with the
information of the heat ‡uxes between the strand and the mold, solves
the thermal problem in the strand.

² The module CCAST-I which evaluates the heat exchange between the
strand and the mold.

The heat exchange strand / mold is modelled as,

qsteel/mold = hsteel/mold (Tmold ¡ Tsteel) (1)

where at a given point qsteel/mold is the heat ‡ux, hsteel/mold is the corresponding
heat transfer coe¢cient, Tsteel is the strand surface temperature and Tmold is
the corresponding mold inner surface temperature.

The values of hsteel/mold are interpolated from a …nite number of values
hsteel/mold

¯̄
k

with k = 1, ..., NCOEF . These NCOEF values are the unknown
in our inverse analysis procedure (CCAST-I).

The objective is to produce a set of values,
£
hsteel/mold

¤
that when introduced

in between the …nite element models of the steel strand and the copper mold
predict:

² At the NT H thermocouple locations the same temperatures that the ones
registered during the actual continuous casting process.

² The same temperature increase in the mold cooling water that the one
registered during the actual continuous casting process.

The above described conditions lead to a system of (NT H + 1) linear equa-
tions with NCOEF unknowns, being NCOEF > (NT H + 1) the system has
multiple solutions. We can write the resulting system as,

[A]
£
hsteel/mold

¤
= [b] (2)

In order to select, among the multiple solutions, the solution that better
ful…ls the physics of our problem in Ref. [19] we established the following min-
imization problem to be solved under the constraints imposed by Eqns. (2),

minimize

"
1
2(

°°£
hsteel/mold

¤°°2 +
°°LMAX (

£
hsteel/mold

¤
)
°°2

+
α2 P

i hgii +
°°LSMT (

£
hsteel/mold

¤
)
°°2

)

#
(3)

In the above,

² The …rst term inside the parentheses on the r.h.s. imposes the condition
that from all possible solutions we choose the solution with the minimum
norm.
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² The second and third terms inside the parentheses on the r.h.s. imposes
an a priori information: at the meniscus level the heat ‡ux presents a
maximum. The second term imposes the necessary condition for an ex-
treme.

² The interpolation functions adopted for the heat transfer coe¢cient are
piece-wise constant, therefore to calculate the derivatives in the above
equation we use a …nite di¤erence operator: the matrix LMAX .

² However, we also have to impose the su¢cient condition for a maximum.
This condition can be written for every element containing the meniscus
level as,

gi = (hsteel/mold,j ¡ hsteel/mold,i) · 0 . (4)

In the above equation the i¡level is on the meniscus and the j¡level is
immediately below.
Also α2 is a penalty factor to be determined by numerical experimentation
and h¢i are the Macauley brackets.

² The fourth term inside the parentheses on the r.h.s. imposes another
a priori information: the heat transfer coe¢cient has to be a smooth
function. Hence, we impose,

minimize
°°°r2hsteel/mold

°°°
2

. (5)

In order to calculate the Laplacian in Eqn.(5) we use a …nite di¤erence
operator: the matrix LSM T .

In Ref. [19] we developed a numerical methodology for the iterative solution
of the constrained minimization problem described by Eqns. (3) and (2).

2.1 Numerical simulations using CCAST
2.1.1 Stability test

We need to test the stability of the solutions provided by the CCAST system;
for this purpose we consider a set of thermocouple indications obtained during
a period of time in which the set up of the operational variables was station-
ary. For each thermocouple we consider its average indication and its standard
deviation and then we run two analyses:

1. Using the average indication for each thermocouple.

2. Using a modi…ed set of values, each thermocouple indication was modi…ed
using a random error proportional to its standard deviation:

T ε
i = T average

i + 3 ε si

¡1 · ε · 1 random variable
si : standard deviation of the set of thermocouple indications for Ti .
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Also,

Gε
water = Gaverage

water + 3 ε sGW

¢T ε
water = ¢Taverage

water + 3 ε sT W .

In Fig. 2 we compare the results of both analyses for one thermocouple line
(TC4). It can be observed that the results corresponding to the average and
perturbed set of values are almost coincident; therefore, we can assess that the
developed algorithm (CCAST-D + CCAST-I) provides very stable results.

2.1.2 Analysis of an industrial case

We use the CCAST system with the information provided by the thermocou-
ples installed in a mold of SIDERAR continuous casting facility (San Nicolás,
Argentina).

The thermocouples data correspond to the average of the data acquired
during a period of 28 min.

The casted steel chemical composition is indicated in Table I.

%C %Mn %Si %P %S %Al
0.07 0.25 0.03 0.02 0.015 0.035

Table I

In Fig. 3 we show the temperature map predicted by the system for the hot
face of the mold movable plate. This map does not show a uniform temperature
distribution due to the geometries of the water cooling channels and of the
mold structure. Notice that the temperatures increase near the mold exit due
to the lack of cooling water in this area of the analyzed mold [20]. In Fig. 4 we
represent the steel / mold heat ‡uxes predicted by our model.

In Fig. 5 we compare the phase distribution results that were obtained, in
a section located 800 mm downstream the meniscus, using:

² The complete CCAST system including the inverse analysis module.

² CCAST-D with the steel / mold heat ‡uxes provided by the Savage-
Pritchard equation adjusted to match the total heat extraction measured
in the actual mold.

In Fig. 6 we present a detailed comparison of the corner areas. The di¤erence
in these areas, at the mold exit, is as large as 300±C; this result indicates that
the Savage-Pritchard equation does not provide a good approximation in those
areas where the gap is larger. Similar results have been reported in Ref.[21].
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3 Modeling of the hot rolling process
In previous references we developed a formulation for modeling bulk metal form-
ing processes based on the ‡ow formulation [22](rigid - viscoplastic material
models) and the pseudo-concentrations technique [23], [24]. The resulting for-
mulation uses an Eulerian description of motion inside a …xed mesh avoiding,
therefore, the numerical problems associated with the re-meshing procedures
that are required when a Lagrangian description of motion is used.

We implemented the above mentioned …nite element formulation in our code
METFOR. When specialized for the analysis of hot rolling processes our formu-
lation couples the rigid-viscoplastic deformation of the workpiece to the elastic
deformation of the rolls. The heating and thermal expansion of the rolls are
also incorporated into the formulation.

A description of the application of our …nite element formulation to the
analysis of hot rolling processes, together with experimental validation of the
numerical results and a discussion of technological applications can be found in
our Refs. [2], [5], [8] and [11].

3.1 Numerical simulation of an industrial case
In Fig. 7 we present a schematic representation of the hot rolling mill at Sidor
(Puerto Ordaz, Venezuela) and in what follows we show the results of a para-
metric study that we carried out for the …nishing stand F1.

The temperature map of the working rolls changes during the rolling process,
each coil is processed with a di¤erent working rolls temperature map; even
more, the rolls temperature map changes from the beginning to the end of a coil
process. Hence, we focus our study on the rolling conditions of a selected coil.

In Fig. 8.a we present two temperature maps of the F1 working rolls, one
corresponding to the beginning of the selected coil process and the second one
corresponding to the …nish of the selected coil process; it is clearly shown the
evolution of the temperature map during the process of a single coil. In Fig.
8.b we present the rolls pro…le1 at the same instants.

In Fig. 9 we present the …xed mesh that we used for modeling the F1 stand
and the pseudo-concentrations distribution (the actual material corresponds to
the shaded space).

Finally in Fig. 10 we present the results of our parametric study, showing
the pro…le of the plate2 that exits the stand F1 under three conditions:

² Working rolls with their mechanical and thermal crown considered 3 .

² Working rolls with only the mechanical crown (beginning of the rolling
process with cold rolls)

1 See Appendix
2 See Appendix
3 See Appendix
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² Working rolls without mechanical crown and with the corresponding ther-
mal crown.

4 Material constitutive relations for modeling
hot steel forming processes

When modeling hot metal forming processes using rigid-viscoplastic material
models we use an associate viscoplastic ‡ow rule with von Mises yield function
[25]. Also an isotropic hardening law is normally used to relate the instanta-
neous yield stress (σy) with the equivalent viscoplastic strain (ε), the equivalent

viscoplastic strain rate (
¢
ε) and the temperature (T),

σy = σy (ε,
¢
ε, T ) (6a)

¢
ε =

D ε
D t

=

r
2
3

¢
εij

¢
εij (6b)

where,
¢
εij are the components of the strain rate tensor and D( .)

Dt is a material
derivative [26].

In the present section we are going to assume instantaneous plasticity; hence,
we can write for the equivalent von Mises stress (σ) [25],

σ = σy = σ y(ε,
¢
ε, T ) . (7)

For de…ning the above relation we can follow two main approaches:

² Phenomenological constitutive relations. Curve …tting of simple mechani-
cal tests are used to determine the material parameters involved in these
constitutive relations (e.g. torsion, tension or compression tests).

² Constitutive relations based on the modeling of the microstructural evolu-
tion. These constitutive relations are based on more fundamental physi-
cal bases and the material parameters to be adjusted are determined via
microstructural observations in programmed temperature - deformation
excursions.

In the present section we will discuss three di¤erent phenomenological hard-
ening laws and we will comment on its limitations to accurately represent the
behavior of a steel being deformed at high temperature. We will also discuss an
algorithm for identifying the parameters used in the phenomenological consti-
tutive equations from the results of the torsion test.
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4.1 Phenomenological constitutive relations
In Ref. [27] the Author reviews di¤erent phenomenological models, used when
modeling hot metal forming processes, for computing the instantaneous yield
stress as a function of the deformation parameters and the temperature ( 6a).

In this section we will concentrate our discussion on three strain hardening
models: The Fields - Backofen model and two exponential-power models.

² The Fields - Backofen model

σy = A(T) εn(T )
¢
ε

m(T )
. (8)

This model provides, for a …xed temperature and a …xed viscoplastic strain
rate, an yield stress that monotonically grows with the equivalent viscoplastic
strain; hence, it cannot represent recrystallization phenomena ( [28], [29]) such
as the one illustrated in Fig. 11 for a set of compression tests performed on steel
samples at our metallurgical lab and post-processed to obtain the true stress -
true strain curves as indicated in Ref. [30].

For any material to be considered, and for each temperature level to be con-
sidered we have to determine the following material constants: A(T), n(T ), m(T).

² Exponential-power law 1

σy = [A(T) e¡B(T )ε (ε + εo)n(T ) + C(T) (1 ¡ e¡B(T )ε)]
¢
ε

m(T )
. (9)

This law takes the functional form,

σy = f (ε,T ) g
¢
(ε) . (10)

For a test at constant temperature and constant strain rate, since g(
¢
ε) 6= 0,

the maximum stress (see Fig. 11) will be located at a strain value ε¤given by
the following equation,

∂f
∂ε

= 0 (11)

therefore, ε¤ will not be a function of
¢
ε. This behavior does not match the

experimental evidence shown in Fig. 11, from which it is clear that the strain
value that de…nes the stress peak ( ε¤) grows with the strain rate. Even tough
a de…nition of a constitutive relation that can accommodate the relation ε¤ =
ε¤(

¢
ε) is most desirable, the above de…ned exponential-power law has proved to

provide very good results in the modeling of hot rolling processes.
For any material to be considered, and for each temperature level to be

considered we have to determine the following material constants: A(T), B(T ),
C (T ), εo, n(T ), m(T ).
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We also de…ne the following temperature dependence:

A(T) = Ko e
β
T (12)

B(T) = (ro + r1T )

C(T) = Kst e
βst
T

n(T) = no

m(T) = mo + m1T

² Exponential-power law 2

σy = [A(T ) e¡B(T)ε
q

(1 ¡ e¡n(T )(ε+εo)) + C (T) (1 ¡ e¡B(T )ε)]
¢
ε

m(T )
. (13)

For this case we have the same comments as for the previous one.
For any material to be considered, and for each temperature level to be

considered we have to determine the following material constants: A(T), B(T ),
C (T ), εo, n(T ), m(T ).

We de…ne the same temperature dependence as for the exponential-power
law 1.

4.2 Mechanical tests used for material parameters identi-
…cation

There are basically three simple mechanical tests that can be independently
used to determine the material parameters de…ned above when describing the
phenomenological hardening models: the tension test, the compression test and
the torsion test.

The tension test presents the problem of the varying geometry of the sample
during necking; hence, it is normally used in the range of small strains, a range
that is not useful for the modeling of hot metal forming processes.

For the compression test with logarithmic strains smaller than (¡0.8) the
bulging of the sample, induced by the friction between the sample and the
compression dies, a¤ects the results; since the friction coe¢cient between the
sample and the compression dies is normally not known, this test is also used in
the range of relatively small strains, a range that is not useful for the modeling
of hot metal forming processes [30].

The torsion test provides data for the complete strain range that is of interest
when modeling hot metal forming processes, therefore we will concentrate on
this test [31].
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4.3 Post-processing the torsion test for material parame-
ters identi…cation

In what follows we present an algorithm for identifying the material parameters,
for any of the three strain hardening laws described in the previous subsection,
using the torque - turn curves produced with a set of torsion tests.

In Fig. 12 we show the experimental torque-turn curves obtained at a …xed
temperature and using di¤erent angular velocities.

By performing the inverse analysis that we will describe in what follows we
can identify for each material model the corresponding parameters. Using the
calculated parameters we can calculate the resulting values of ¡AN A, which we
plot in the same …gure.

In what follows we call,
¡ : torque
N : turns¢
N : turns per unit time ( dN

dt ).

Each curve ¡ = ¡(N ) corresponds to a …x set (
¢
N, T).

We start our identi…cation algorithm de…ning the torque, in a round solid
specimen with radius (R) and length (L), as a function of the equivalent stress,

¡(N,
¢

N ) =
2πp

3

Z R

0
σ(ε,

¢
ε) r2 dr (14a)

ε =
2πrp
3L

N (14b)

¢
ε =

2πrp
3L

¢
N . (14c)

Using one of the phenomenological constitutive equations de…ned in the pre-

vious section, we can calculate for any set of values (N,
¢

N, T ), using Eqns.
(14a to 14c), an analytical value for the torque (¡AN A). Being [Xi ] the vector
of material constants corresponding to a given phenomenological constitutive
equation and to a temperature (T), we can write,

¡AN A = ¡AN A(N,
¢
N, Xi) . (15)

² For the Fields - Backofen model,

¡AN A =
2πp

3

Z R

0
A

µ
2πp
3L

Nr
¶n µ

2πp
3L

¢
Nr

¶m

r2 dr (16)

=
2πp

3

A
³

2πp
3L

N R
´n

µ
2πp
3L

¢
NR

¶m

R3

n + m + 3
.
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² For the exponential-power law 1 model,

¡AN A =
2πp

3

Z R

0

·
A

µ
2πp
3L

Nr
¶n

e¡B 2πp
3L

Nr + C (1 ¡ e¡B 2πp
3L

N r)
¸

(17)
µ

2πp
3L

¢
Nr

¶m

r2 dr .

Notes:

1. From direct inspection of the experimental curves we set εo = 0.

2. We do not get a closed form solution of the integral in the above equation;
therefore, we work with numerical integrals.

² For the exponential-power law 2 model,

¡AN A =
2πp

3

Z R

0

·
A

q
1 ¡ e¡n 2πp

3LNr e¡B 2πp
3LNr + C(1 ¡ e¡B 2πp

3LN r)
¸
(18)

µ
2πp
3L

¢
Nr

¶m

r2 dr .

Same notes as for the previous case.
We now de…ne for the considered temperature an error function,

E(Xi) =
X

N

X

¢
N

[¡AN A(N,
¢
N, Xi) ¡ ¡EX P (N,

¢
N, T )]2 . (19)

As a …rst step we minimize the above de…ned error function, obtaining the
material parameters [Xi] corresponding to each tested temperature; afterwards
we use Eqns. (12) or similar ones to establish the temperature dependence of
the material parameters.

It is important to remark that in the case of the exponential-power laws
we could have used Eqns. (12) in Eqns. (17) and (18) obtaining; therefore, a
system wit 10 equations. We chose to solve several systems of 5 equations (one
for each tested temperature) rather than one system of 10 equations due to the
bad conditioning of the system, typical of inverse problems.

4.3.1 The Fields-Backofen model

In this case we can simplify the error minimization by rede…ning the error func-
tion as,

E(Xi) =
X

N

X

¢
N

[ln ¡AN A(N,
¢
N, Xi) ¡ ln ¡EXP (N,

¢
N ,T )]2 . (20)

The minimization of the above error function leads to a nonlinear system of
equations.
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4.3.2 The exponential-power law models

In these cases the integrals involved in the de…nition of ¡AN A are calculated
using the Gauss numerical integration method, therefore we make the following
variable transformation,

r ε [0, R] ! ξ ε [¡1, 1] (21)

where the coordinate value \ξ" is called natural coordinate.
Hence, for Eqn. (17) we get,

¡AN A =
2πp

3

N GAUSX

i=1

wi
£
A εn

i e¡Bεi + C (1 ¡ e¡Bεi)
¤ ¢

ε
m
i

·
R
2

(1 + ξ i)
¸2 R

2
(22)

and for Eqn. (18) we get,

¡ANA =
2πp

3

NGAUSX

i=1

wi

h
A

p
1 ¡ e¡nεi e¡Bεi + C (1 ¡ e¡Bεi)

i ¢
ε

m
i (23)

·
R
2

(1 + ξ i)
¸2 R

2
.

In the above equations,
NGAUS : number of Gauss points used for the numerical integration.
εi = π Rp

3L
N (1 + ξi)

¢
εi = π Rp

3L

¢
N (1 + ξi)

wi is the weight associated to the i-th integration point and ξ i is its natural
coordinate.

4.3.3 Inverse analysis

For any of the three constitutive laws and for a …xed temperature T the set of
material parameters that best approximates the experimental curves is

h
bXi

i
for

i = 1, ..., NP AR (NP AR = 3, for the Fields - Backofen model and NPAR = 5
for the exponential - power models); hence, the error is minimum (not necessarily
zero) for this set of parameters:

·
∂E
∂Xi

¸

bX
= 0 i = 1, ..., NP AR (24)

Using as a starting set [X ](0) , we solve the nonlinear equations system (24)
with an iterative procedure that for the k-th iteration can be written as,
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·
∂E
∂Xi

¸(k¡1)

+
·

∂2E
∂Xi ∂Xj

¸(k¡1)

[¢Xj ](k) = 0 i = 1, ..., NPAR (25a)

[Xi](k) = [Xi ](k¡1) + β [¢Xj ](k) i = 1, ..., NPAR . (25b)

In Eqn. (25a) the repeated subindex \j" indicates a sum from one to NP AR;
the value β is obtained using a standard line search algorithm [32].

The iterative process is continued until,
°°°°°

·
∂E
∂Xi

¸(k)
°°°°° · ET OL . (26)

Notice that for the Fields - Backofen model the …rst and second derivatives
in Eqn.(25a) can be calculated using a closed form expression while for the
exponential - power models these …rst and second derivatives are calculated
deriving Eqns.(22) or (23).

Our numerical experimentation shows that for the case of the exponential -
power material models the Newton iterative procedure in Eqns. (25a,25b) is not
globally convergent [32], that is to say not every starting set [X ](0) will provide
a converged solution. Also, due to the bad conditioning of the system, starting
from di¤erent points we may get di¤erent solutions satisfying the inequality in
(26). Hence, for the case of the exponential - power models, we developed a
separate algorithm for producing a convenient estimation of the starting set.

4.3.4 Inverse analysis: De…nition of a starting set for the exponential
- power material models

In this algorithm we take into account:

1. The experimentally determined value of ¡1 = lim
N!1

¡(N ) (see Fig. 12)
that will be used to determine the constants C and m. For both exponen-
tial - power models,

lim
N!1

¡ANA =
2πp

3
C

µ
2πp

3

¢
N

R
L

¶m R3

m + 3
(27)

the initial values of (C, m) will minimize the function

E¡(C, m) =
X

¢
N

(ln¡ANA
1 ¡ ln¡EXP

1 )2 (28)

=
X

¢
N

·
(ln(

2πp
3

C R3) + m ln(
2πp

3

¢
N

R
L

) ¡ ln(m + 3) ¡ ln ¡EX P
1

¸2
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2. The value bN that corresponds to the peak torque satis…es the equation£ ∂ ¡
∂ N

¤
bN = 0. In the torque analytical expression the value ¤ANA =

¡ANA/
¢
N

m
is independent of

¢
N (see Eqns. (22) and (23)); however in

the experimental curves this is not necessarily the case. Hence, we take
as

³
b¤EXP, bNEXP

´
the average of the corresponding magnitudes on the

curves obtained at constant rotation speed.

b¤EXP =
1

NTOT

N T OTX

i=1

"
b¡EXP

¢
N

m

#

i

(29a)

bNEXP =
1

NTOT

N T OTX

i=1

h
bNEXP

i
i

(29b)

The two equations that we use to determine admissible set of starting values
(A, B, n) are,

b¤ANA = b¤EX P (30a)"
∂ b¤ANA

∂ N

#

bNEXP

= 0 (30b)

To de…ne the starting set of parameters:

² We use the values of (C, m) obtained from the minimization of the function
de…ned by Eqn. (28).

² We de…ne with Eqns. (30a,30b) the relations A = A(n) and B = B(n) and
afterwards we search the value of n ε [0, nMAX ] that produces the smaller
error E (Eqn.(19)) within the discrete set of values

£
0, nMAX

NS , 2nMAX
NS , ..., nMAX

¤
.

From practical considerations we use nMAX = 1 for the …rst exponential
- power model and nM AX = 10 for the second one and NS = 10.

4.3.5 Inverse analysis results

The experimental tests shown in Fig. 12 were also performed at di¤erent tem-
peratures. In Figs. 13-15 we represent the σ ¡ ε curves that we obtained
post-processing the torsion tests with each of the considered phenomenological
material models.

Please notice that,

² As commented above the Fields - Backofen law fails to represent the re-
crystallization phenomenon observed in the experimental curves.

² The Exponential Power Laws 1 and 2 while representing the recrystalliza-
tion phenomenon are not able to represent the strain-rate induced shifting
of the peak stress location.
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² Since the problem of determining the material constants by …tting the
torque - turn experimental curves is ill conditioned, the solution is not
unique; hence, we may get di¤erent sets of parameters providing approxi-
mately the same torque-turn analytical curves and the same stress - strain
curves.

5 Conclusions
In the present paper we discussed the application of the …nite element method
to the modeling of the manufacturing processes for ‡at steel products (plates
and coils).

Since numerical model results are nowadays used in industry as the basis
for fundamental technological decisions, it is very important that the numerical
models are as accurate as possible; therefore, the analysts should select …nite
element formulations that guarantee convergence when the mesh is re…ned and
stability when boundary conditions or material properties are changed (see [14]
and [13]).

Another fundamental issue is the use of accurate values for the physical prop-
erties. Related to this are the inverse analysis procedures used for parameters
identi…cation. Considering that these procedures are normally ill-conditioned, it
is very important to introduce in them as much physical knowledge as possible,
in order to “guide” the solution.
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A Rolling terminology
In this appendix we are going to brie‡y comment some concepts pertaining to
rolling technology, that have been used in the main body of this paper.

A.1 Plate pro…le and plate crown
The transversal section of a rolled steel plate is usually not a rectangle but it
has a shape similar to the one schematized in Fig. 16, this shape is referred to
as the plate pro…le. In order to have a quantitative measure of the di¤erence
between the plate thickness at the center of its transversal section and near its
edges the plate crown is de…ned; in the same …gure we indicate this de…nition.

A.2 Plate ‡atness
Since the transversal section of a plate is of variable thickness, it is apparent
that during rolling di¤erent …bers located at di¤erent locations across the plate
will undergo di¤erent elongations; hence, due to the plate continuity, some …bers
will be in a tensile state and others in a compressive state. It is well known that
the compressed parts may buckle and therefore the plate may loose its ‡atness.

A.3 Rolls pro…le and crown
The work rolls and sometimes also the back-up rolls are not straight cylinders,
usually the cylinder generatrices have a shape similar to the ones indicated in
Fig. 17 (roll pro…les), to compensate the bending of the rolls and therefore
produce a plate with a smaller crown. The number used to de…ne a roll pro…le
is the roll crown whose de…nition is also indicated in the same …gure.

As it was discussed in the fourth section the thermal evolution of the work
rolls during rolling imposes an evolution of their shape, hence the original or
mechanical crown of the rolls is modi…ed by a thermal crown ; therefore,

total crown = mechanical crown + thermal crown
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Figure 1: Scheme of a continuous casting installation for steel slabs
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Figure 2: CCAST. Results of the stability test for a thermocouple line (TC4)
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Figure 3: Hot face of the movable mold plate. Temperature map

Figure 4: Heat ‡uxes along the movable mold plate
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Figure 6: Comparison between the results obtained with the inverse analysis
and with the Savage-Pritchard equation. Corner area detail
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Figure 7: Hot rolling mill
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beginning of selected coil rolling

ending of selected coil rolling

a) temperature maps of the F1 working rolls

b) thermal expansion of work rolls

Figure 8: Analysis of the stand F1
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Figure 9: Analysis of the F1 stand. Fixed mesh and pseudo-concentrations
distribution

Figure 10: Parametric analysis of the F1 stand
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Figure 13: Post-processing of the torsion test results. Fields-Backofen model
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Figure 14: Post-processing of the torsion test results. Exponential-power law 1
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Figure 15: Post-processing of the torsion test results. Exponential-power law 2

Figure 16: De…nition of plate crown
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Figure 17: Roll crowns
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