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Effects of internal /external pressure on the global buckling
of pipelines
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Abstract

The global buckling (Euler buckling) of slender cylindrical pipes under internal/external pressure and axial compression
is analyzed. For perfectly straight elastic pipes an approximate analytical expression for the bifurcation load is developed.
For constructing the nonlinear paths of imperfect (non straight) elasto-plastic pipes a finite element model is developed. It
is demonstrated that the limit loads evaluated via the nonlinear paths tend to the approximate analytical bifurcation loads
when these limit loads are inside the elastic range and the imperfections size tends to zero.
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1. Introduction

When a straight pipe under axial compression and inter-
nal (external) pressure is slightly perturbed from its straight
configuration there is a resultant force, coming from the
net internal (external) pressure, that tends to enlarge (di-
minish) the curvature of the pipe axis. Hence, for a straight
pipe under axial compression, if the internal pressure is
higher than the external one, there is a destabilizing effect
due to the resultant pressure load and therefore, the pipe
Euler buckling load is lower than the Euler buckling load
for the same pipe but under equilibrated internal/external
pressures; on the other hand when the external pressure is
higher than the internal one the resultant pressure load has
a stabilizing effect and therefore the pipe Euler buckling
load is higher than the Euler buckling load for the same
pipe but under equilibrated internal/external pressures.

The analysis of the buckling load of slender cylindrical
pipes under the above described loading is important in
many technological applications; for example, the design of
pipelines. In Fig. 1 we present a simple case, for which the
axial compressive load (7) has a constant part (C) and a
part proportional to the internal pressure (p;).

That is to say,
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T =C+kp M

where k is a constant depending on the particular applica-
tion.

In the second section of this paper we develop an
approximate analytical expression for calculating the Euler
buckling load for elastic perfectly straight cylindrical pipes
(bifurcation limit load) and in the third section we develop
a finite element model to determine the equilibrium paths
of imperfect (non straight) elasto-plastic cylindrical pipes.
From the analysis of the nonlinear equilibrium paths it is
possible to determine the limit loads of pipes under axial
compression and internal/external pressure. Of course, this
limit loads depend on the pipe imperfections; however, we
show via numerical examples that, for the cases in which
the bifurcation limit loads are inside the elastic range, the
pipe limit loads tend to the bifurcation limit loads when the
imperfections size tends to zero.

2. Elastic buckling of perfect cylindrical pipes
2.1. Internal pressure

In Fig. 1 we represent a perfectly straight slender cylin-
drical pipe, in equilibrium under an axial compressive load

and internal pressure; let us assume that we perturb the
straight equilibrium configuration getting an infinitely close
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Fig. 1. Cylindrical pipe under internal pressure and axial com-
pression.

configuration defined by the transversal displacement, v(x),
of the points on the pipe axis. If for some loading level,
defined by p; and by Eq. (1), this perturbed configuration
is in equilibrium we say that the load level is critical (buck-
ling load) because a bifurcation of the equilibrium path, in
the loads—displacements space, is possible.

Due to the polar symmetry of the problem we consider
that all the displacements v(x) are parallel to a plane. For a
longitudinal fiber defined by the polar coordinates (x, r, )
(see Fig. 1) we have, for the case of small strains,

&er = =" (x)r cos 8 2)

where ¢,, is the axial strain and v”(x) =

On a differential pipe length, the resultant pressure force
due to the pipe bending is normal to the bent axis direction
(follower load) and its value is,

T

qg(x)dx = Z/p,- cosO(1 +¢&,,)r; d6 dx 3)
0

dZv(x)
T2

where r; is the pipe inner radius.Using Eqs. (2) and (3) we
get,

q(x) = —piriv’(x) “

which is the resulting force per unit length produced by the
internal pressure acting on the deformed configuration. This

load per unit length has horizontal and vertical components
that in our case (v'(x) < 1) are,

¢ (x) = g)sin[vV'(D)]. (5)

Using a series expansion of the trigonometric functions
and neglecting higher order terms, we get:

g (x) = —pir}v"(x);  gy(x) = 0. (6)

To analyze the equilibrium of the perturbed configura-
tion, being this an elastic problem, we use the Principle of
Minimum Potential Energy [1,2]. When only conservative
loads are acting on the pipe, equilibrium is fulfilled if, in
the perturbed configuration,

8 =0 @)

gn(x) = g(x) cos [v'(x)];

where [T is the potential energy,
n=uv-v ®)

U: elastic energy stored in the pipe material, V: potential
of the external conservative loads.

In our case we have to consider the displacement depen-
dent loads (non-conservative) given by Eq. (6), therefore
[3]:

L

S(U-V) —/thU(x)dx =0 ©)]
0
and [1],
L
_ E " 10
= v (x) (102)
0
L
%/ v(x) (10b)
0
L L
/qh Sv(x)dx = / —pimrv” (x) 8v(x) dx (10c)

0

E: Young’s modulus of the pipe material, /: inertia of the
pipe section with respect to a diametral axis.

Hence, introducing the above in Eq. (9) we get for the
fulfillment of equilibrium,

L L
EI [, T [,
5[7/[1; ] dx — 5/[1) @]’ dx]
0 0

L
+ pimr? / v’ (x)8v(x) dx = 0. (11)
0

We search for an approximate solution of the above
equation using the Ritz Method [1], therefore we try as an
approximate solution,

3(x) = Z a,,sm—. 12)

n=1.2,...
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Fig. 2. Simply supported pipe open on both ends under internal
pressure.

Introducing the proposed approximate solution in Eq.
(11) and taking into account that the a, are arbitrary
constants we get for equilibrium,
|:E1n47'r4 Tn*n? il

— Pil;

a, =0 n=1,2,.
L3 L !

(13)
The above equations have two possible solution sets:
e a, = 0; which corresponds to the unperturbed straight

configuration.
44 2.2 2.3 .
el s ] = 0; which corresponds

to an equilibrium configuration different from the
straight one.
The second solution gives the location of the bifurcation
point (critical loading),

2 2
, nEIn
Tcr + picrﬂri - LZ (143)
, n?Elx’
Ccr + kpicr + PierT¥; = ————. (l4b)

12

It is interesting to realize that the above equations pre-
dict that there is a critical (buckling) pressure also if there
is no axial compression (7' = 0) and even if there is axial
tension on the pipe (' < 0).

Let us consider the following cases:

e Simply supported pipe, closed on both ends, under
internal pressure.

In this case, C = 0 and k = —nriz; hence, from Eq.
(14b) it is obvious that the only possible solution is the
straight configuration and no bifurcation is possible.

e Simply supported pipe, open on both ends, under inter-

nal pressure (Fig. 2).

An example of this case is the hydraulic testing of a
pipe. In this case: C = 0, k = 7 (r? — r?). Hence, using
Eq. (14b) we get,

Eln
Picr = 1572

Obviously, if there are (n — 1) intermediate supports we
have,
n*Eln

Picr = .
242
L*r;

2.2. External pressure

For the cases in which the pipe is submitted to external
pressure we rewrite Eq. (6) as,

qv(x) = 0. (15)

Hence, after some algebra we get for the equilibrium of
the perturbed configuration,

L L
EI [, T [,
5[7/[1; ] dx — E/[u @]’ dx]
0

0

g (x) = perrr}v"(x);

L
- penrf/v”(x)év(x) dx =0 (16)
0

using as an approximation for the equilibrium configuration
the one written in Eq. (12), we finally get,

EI 4_4 T 2.2 2.3
[%ﬂ— nLJT +peri2%i|a,, =0 n=12,...
(r7)

therefore, for the nontrivial solution,
, n’Elx’

Tcr = PecrTF; = T (183)

2EIx?
Ccr + kpecr - pecrﬂriz = 2 L2 . (18b)

From the above equations it is obvious that the external
pressure has a stabilizing effect on the pipe; that is to say,
the axial compressive load that makes the pipe buckle is
higher than the Euler load of the pipe under equilibrated
internal /external pressures.

Let us consider the following case:

e Simply supported pipe, closed on both ends, under
external pressure.

For this case C = 0 and k = 77?2 therefore from Eq.

(18b) we get,
_ Elx
pecr - Lz(rez — riz)

and if the pipe has (n — 1) intermediate supports,

n’Elnr

Pecr = 7142(”62 — rl_z) .
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Comparing this result with the one corresponding to the
pipe under internal pressure it is obvious that the pipe
under external pressure can withstand a higher pressure
without reaching the bifurcation load; hence, it is obvious
the stabilizing effect of the external pressure.

3. Nonlinear equilibrium paths for non-straight
elasto-plastic cylindrical pipes

An actual pipe is not perfectly straight, and its random
imperfections will have a projection on the buckling mode
of the perfect pipe; hence, when analyzing the equilibrium
path of a non-perfect pipe we shall encounter a limit point
rather than a bifurcation point [4]. The load level of this
limit point shall depend on the pipe imperfections, will
be lower than the bifurcation load of the perfect pipe and
will tend to this value when the imperfections size tends to
Zero.

In order to analyze the nonlinear equilibrium paths of
imperfect pipes we developed a finite element model using
the general purpose finite element code ADINA [5].

Some basic features of the developed finite element
model are:

e The pipe behavior is modelled using Hermitian (Ber-
noulli) beam elements [6].

e The pipe model is developed using an Updated La-
grangian formulation with an elasto-plastic (associated
von Mises) material model (finite displacements and
rotations but infinitesimal strains) [6].

e Acting on the beam elements we consider a conservative
load (T) and a deformation dependent load normal to
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the pipe axis, that for the case of internal pressure is
(see Eq. (6)),

gn = —pirr v (x) + ¢ (x)]

where ¢ (x) is the initial imperfection of the pipe axis.

We simply calculate, in our finite element implemen-
tation,the second derivatives using a finite differences
scheme. To provide a numerical example, we use the finite
element model to analyze the following case:

Pipe outside diameter 60.3 mm
Pipe wall thickness 3.9 mm
Pipe length 12,200 mm
Intermediate grips 4

38.70 kg/mm?
0.0

Pipe yield strength
Hardening modulus

under the loading defined by an internal pressure and,
C=0,k=n(r§—r,-2).

3.1. No clearance between the pipe and the grip

We consider the following initial imperfection for the
pipe axis,

£) = @02 —= sin (5”—x> (19)

1000 L
which is obviously zero at the grips and is coincident with
the first buckling mode predicted using the Ritz method
(Eq. (12)).
In Fig. 3 we plot the load—displacement equilibrium
path for various values of « and in the same graph we plot
the bifurcation limit load obtained using Eq. (14b).

35 Bifurcation limit load : 3.37 kg/mm2

Pressure [kg/mm2]
o &
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—o—o = 10.00
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Lateral displacement at the tube center [mm]

Fig. 3. Grips with no clearance. Load—displacement curves.
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35 Bifurcation limit load : 3.37 kg/mm2
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Fig. 4. Clearance between grips and pipe body. Load—displacement curves.

We can verify from this figure that the limit load in-
creases when the size of the imperfection («) diminishes,
and that it tends to the bifurcation limit load when o — O.

3.2. Clearance between pipe and grips

This is a more realistic case because, unless the grips are
welded to the pipe body, there is usually some clearance
between the pipe and the grips.

We analyze the same case that was considered in the
previous subsection but allowing for a clearance between
the grip and the pipe body of 5 mm. We consider the
following initial imperfection for the pipe axis,

()_02L . [ Smx
£ = 029550 50\ L

L L TX
02— — 02— )sin(ZX 20
+< 100 1000) sm( L ) (20)

and between the rigid grip and the pipe we introduce a
contact condition.

In Fig. 4 we plot the nonlinear equilibrium paths corre-
sponding to the cases:

e Clearance between grips and pipe body (initial imper-

fection as per Eq. (20)).

e No clearance between grips and pipe body (initial im-

perfection as per Eq. (19) with « = 1.0).

From the results plotted in Fig. 4 it is obvious that the
only imperfection that has an influence on the pipe critical
load is the imperfection that is coincident with the first pipe
buckling mode.

4. Conclusions

We derived an approximate analytical expression for
calculating the Euler buckling load of a pipe under axial
compression and internal/external pressure. This expres-
sion incorporates the destabilizing/stabilizing effect of the
internal /external pressure.

We constructed a finite element model to determine the
nonlinear equilibrium paths, in the loads—displacements
space, of imperfect (non-straight) elasto—plastic pipes.
From the analysis of the nonlinear equilibrium paths it
is possible to determine the limit loads of pipes under ax-
ial compression and internal/external pressure. Of course,
these limit loads depend on the pipe imperfections; how-
ever, we showed via numerical examples that, for the cases
in which the bifurcation limit loads are inside the elastic
range, the pipe limit loads tend to the bifurcation limit
loads when the imperfections size tends to zero.
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