
An Eulerian …nite element formulation for modeling stationary
…nite strain elastic deformation processes

Dolores Demarco and Eduardo N. Dvorkin
Center for Industrial Research, FUDETEC

Av. Córdoba 320
1054 Buenos Aires, Argentina

Abstract
A new …nite element formulation, aimed at the modeling of stationary …nite strain elastic deformation
processes is presented. The new formulation is based on an Eulerian description of motion and on
the transport of the deformation gradient tensor.

1 Introduction
Most of the new technological developments in metal forming rely on the computational modeling of
the deformation processes in order to analyze the e¤ect of di¤erent set-up options, of di¤erent forming
tools, of di¤erent lubrication conditions, etc. In Ref.[1] some experiences related to the steel industry are
discussed.

For modeling bulk metal forming processes, in those cases where the elastic strains can be neglected,
the ‡ow formulation [2] (rigid-viscoplastic material models [3]) is normally used.

At our research center we have implemented, for analyzing transient and stationary metal forming
processes, the ‡ow formulation using an Eulerian description of motion with a …xed mesh and the material
moving inside that mesh [4] [5] via the pseudo-concentrations technique [6] [7]. The main advantages
of this implementation are that it is very e¢cient and that it does not require remeshing techniques.
Regarding its use in technological analyses, the developed …nite element formulation was implemented in
our code METFOR and it is being used for analyzing the hot rolling of steel products ([8] to [11]) and
the continuous casting of steel slabs [12].

However, in the analysis of some bulk metal forming processes it is not possible to neglect the
elastic deformations, e.g. the cold rolling of steel plates, either because the elastic spring-back plays an
important role in the process or because the residual stresses need to be determined. Hence, it is desirable
to develop an Eulerian formulation for modeling stationary deformation processes, with the capability of
incorporating elastic e¤ects.

Some attempts for a-posteriori estimations of the elastic e¤ects, on the basis of the results provided
by the ‡ow formulation, have been presented in the literature [13]; also some attempts for including the
elastic e¤ects using a hypoelastic formulation to model the elastic behavior have been published [14].

In this paper we discuss a …nite element formulation, suitable for modeling stationary elastic
…nite deformation processes, that is based on an Eulerian description of motion and on a hyperelastic
constitutive relation. In a di¤erent numerical environment, a similar Continuum Mechanics formulation
has been presented in [15].

In the second section of the paper we present the Continuum Mechanics formulation and in the third
one its …nite element implementation. The developed numerical algorithm is discussed in the fourth
section and demonstrative numerical examples are presented in the …fth one.

It is worth highlighting that the formulation that we develop in this paper is the basis for the
ongoing development of an elasto-plastic …nite strain Eulerian formulation via the pseudo-concentrations
technique.
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2 The Continuum Mechanics formulation

2.1 The Eulerian description of motion
In the spatial con…guration corresponding to time t [16] we use a Cartesian coordinate system
ftxj , j = 1, 2, 3g and at a given point a particle material velocity is given by,

tv = tv( txj , t) . (1)

In the t¡con…guration the following partial di¤erential equations need to be satis…ed,

² Momentum balance equations:

In an Eulerian framework, the equilibrium equations are [16],

tρ
µ

∂ tv
∂ t

+ tv ¢ r tv
¶

= tρ tf V + r ¢ t¾ . (2)

In the above r =
³

∂
∂ txk

tek

´
, where the tek are the ortho-normal base vectors of the Cartesian

system, also

tρ : density.
t¾: Cauchy stress tensor.
tfV : external volumetric load vector.

² Continuity equation:

∂ tJ
∂ t

+ tv ¢ r tJ ¡ tJ r ¢ tv = 0 . (3)

Where, tJ =
oρ
tρ and oρ is the density of the reference con…guration (t = 0). Using Cartesian

coordinates it is immediate to show that [16] [17],

tJ = det
£t
oF

¤
, (4)

where t
oF is the deformation gradient tensor.

² Deformation gradient transport:

The material time derivative of the deformation gradient tensor is [16],

D t
oF

D t
=

∂ t
oF

∂ t
+ tv ¢ r t

oF = tl ¢ t
oF . (5)

In the above equation we introduce the velocity gradient tensor, tlT = r tv.
Also for the isochoric part of the deformation gradient we have,

t
o
bF = tJ ¡ 1

3 t
oF (6a)

∂ t
o
bF

∂ t
+ tv ¢ r t

o
bF =

·
tl ¡ 1

3
¡
r ¢ tv

¢
tg

¸
¢ t

o
bF (6b)

The tensor tg is the metric tensor of the spatial con…guration, in our case it is a Cartesian metric

tensor and
h
det

³
t
o
bF

´i
= 1.

It is important to realize that the ful…llment of Eqn.(5) implies the ful…llment of Eqns.(3 and 6b)
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² Integral form of the Continuum Mechanic equations:

Momentum balance equations
For “slow” deformation processes we can neglect the inertia terms and considering an admissible

spatial velocity …eld δv [18] we can write Eqn. (2) as,
Z

tV

h
tρ tfV + r ¢ t¾

i
¢ δv tdv = 0 . (7)

In the above equation, tV is the volume of the spatial con…guration. Using the divergence theorem
we get,

Z

tV
δv ¢ tρ tfV tdv +

Z

t∂ V
δv ¢ tt tdv ¡

Z

tV
δl : t¾ tdv = 0 (8)

where t∂V is the boundary of the spatial con…guration and tt = tn ¢ t¾ is the traction vector on a
surface with external normal tn.

Equation (8) is the weak form of the momentum balance equations when the inertia forces are
neglected.

Transport of the deformation gradient
For the transport of the deformation gradient tensor, the weak form is obtained via a weighted

residuals technique [19]. For each component of t
oF in the …xed Cartesian system we get, from Eqn. (5)

Z

tV
wPG

p

·
∂ t

oFij

∂t
+ tvk

∂
∂ txk

t
oFij ¡ tlim t

oFmj

¸
tdv = 0 . (9)

In the above equation the wPG
p are the SUPG weighting functions [19] [20] [21] and the index p goes

from one to the number of nodes of the …nite element discretization (NNODES).

2.2 The hyperelastic constitutive relation
For an isotropic elastic material with …nite deformations we use the elastic energy function proposed by
Simo [18] [22]:

tW = tU
¡ tJ

¢
+

1
2
G tr

³
tbb

´
(10a)

tU
¡ tJ

¢
=

1
2
K

¡
ln tJ

¢2 . (10b)

In the above equations tW is the energy density per unit volume of the reference con…guration,
(K, G) are material constants and,

tbb = t
o
bF ¢ t

o
bFT

(11)

is the isochoric part of the Finger deformation tensor.
This model may be regarded as an extension to the compressible range of the neo-Hookean model.
We can write the second Piola-Kirchho¤ stress tensor corresponding to the time t and referred to

the reference con…guration (t = 0) as [23],

t
oS = 2

∂ tW
∂ t

oC
. (12)

In the above equation t
oC is the Green deformation tensor.

Doing a push-forward of the Cartesian components of the second Piola-Kirchho¤ stress tensor we
get the Cartesian components of the Kirchho¤ stress tensor

¡
t¿

¢
[17],
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tτ ij = t
oFil

t
oS lm

t
oFjm . (13)

After some algebra we get for the Cauchy stress components,

tσij =
¡ tJ

¢¡1
·
K ln

¡ tJ
¢

δij + G dev
³

tb̂
´

ij

¸
(14)

where dev(.) calculates the deviatoric part of the tensor between brackets.

3 The …nite element formulation
In this section we are going to discretize the problem outlined in the previous section using the …nite
element method.

3.1 Discretization of the deformation gradient transport equations
To discretize the Eqns. (9) we use for the interpolation of the deformation gradient components:

t
oFij (rl, t) = hk (rl) t

oF
k
ij(t) (15)

where hk (rl) are the isoparametric 3D interpolation functions, frl, l = 1, 2, 3g are the natural coordinates
of a point inside the element [24] and t

oF k
ij are the nodal point values. As usual the repeated index k

indicates a summation over all the nodes.
From Eqn.(9) we get an algebraic system of 9 ¤ NNODES equations; the solution of this equations

system is straightforward using either a direct or iterative solver. An alternative approach that requires
the solution of 3 uncoupled systems of 3 ¤ NN ODES equations each, was presented in Ref.[25].

3.2 Discretization of the momentum balance equations
We use for the interpolation of the velocity …eld,

tv (rl, t) = hk (rl) tvk (t) (16)

where the tvk are the nodal point velocity vectors. Replacing in Eqn. (8) we get,

δvk
i

·Z

tV
hk

tρ tfV
i

tdv +
Z

t∂V
hk

tti
tdv

¸
= δvk

i

Z

tV

∂ hk

∂ txj

t¾ij
tdv . (17)

Hence, being the equivalent external nodal forces vector at time t:

£
tRext

¤k
i

=
Z

tV
hk

tρ tf V
i

tdv +
Z

t∂V
hk

tti
tdv (18)

and the internal one,

£tRint¤k
i

=
Z

tV

∂ hk

∂ txj

t¾ij
tdv . (19)

We next consistently project the deformation …elds obtained from Eqns. (9, 4, 6a) for their use in
the momentum balance equations.
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3.2.1 Projections of tJ and ∂ tJ
∂t

From the solution of Eqns.(9) we determine the value of det
¡

t
oF

¢
at each element node and, from these

values,
tJ (ri , t) = hk (ri)

³
det

¡t
oF

¢k
´

(t) . (20)

Let us consider t£ (ri, t) to be a projection of tJ (ri , t) .Using a new set of interpolation functions
bhl (ri) we can write,

t£(ri , t) = bhl (ri) t£l (t) (21)

where the t£l (t) are the interpolated values.
For the sake of simplicity, from here onwards we shall omit the indication of the independent variables

for each function.
We de…ne the mass matrix,

M J
ij =

Z

tV

bhi
bhj

tdv (22)

and we want the following weak relation to be ful…lled [22],
Z

tV

bhi

h
bhj

t£j ¡ tJ
i

tdv = 0 (23)

hence,

t£l =
£¡

M J¢¤¡1
li

Z

tV

bhi
tJ tdv . (24)

We also consistently calculate,

∂ t£
∂t

= bhl
∂ t£l

∂t
(25)

= bhl
£¡

M J¢¤¡1
li

Z

tV

bhi
∂ tJ
∂t

tdv

Using the continuity equation we get,

∂ t£
∂t

= bhj
£¡

M J¢¤¡1
jl

·Z

tV

bhl
tJ

∂ hk

∂ txi

tdv
¸

tvk
i

¡bhj
£¡

M J
¢¤¡1

jl

·Z

tV

bhl
∂ tJ
∂ txi

hk
tdv

¸
tvk

i (26)

We can write Eqn.(26) as,

∂ t£
∂t

= ¡£
ki

tvk
i . (27)

In the above equation,

¡£
ki = bhj

£¡
M J ¢¤¡1

jl

·Z

tV

bhl
tJ

∂ hk

∂ txi

tdv
¸

(28)

¡bhj
£¡

M J
¢¤¡1

jl

·Z

tV

bhl
∂ tJ
∂ txi

hk
tdv

¸
.
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3.2.2 Projections of t
o
bF and

∂ t
o

bF
∂ t

From Eqn.(15) we get the value of the isochoric part of the deformation gradient tensor at any point
inside an element,

t
o

bFij (rl, t) =
¡
hk (rl) t

oF k
ij (t)

¢ h
det

³
hp (rl)

t
o Fp (t)

´i¡ 1
3

(29)

Let us consider t
o

bFij (rl , t) to be a projection of t
o

bFij (rl, t) . Using a new set of interpolation functions
bbhk (rl) we can write,

t
o

bFij (rl, t) = bbhk (rl) t
o

bFk
ij(t) (30)

where t
o

bF k
ij(t) are the interpolated values.

We de…ne the mass matrix,

MF
kl =

Z

tV

bbhk
bbhl

tdv (31)

and we want the following weak relation to be ful…lled,
Z

tV

bbhk

·
bbhl

t
o

bF l
ij ¡ t

o
bFij

¸
tdv = 0 (32)

hence,

t
o

bF k
ij =

£¡
MF ¢¤¡1

kl

Z

tV

bbhl
t
o

bFij
tdv (33)

For the consistent time derivative we have,

∂ t
o

bFij

∂t
= bbhk

∂ t
o

bF k
ij

∂t
(34)

= bbhk

h¡
MF ¢¡1

i
kl

Z

tV

bbhl
∂ t

o
bFij

∂t
tdv

and using in the above Eqn.(6b) we get,

∂ t
o

bFij

∂t
= bbhk

h¡
M F ¢¡1

i
kl

(35)
·Z

tV

bbhl
t
o
bFmj

µ
∂ hp

∂ txm
δri ¡ 1

3
∂ hp

∂ txr
δ im

¶
tdv

¸
tvp

r

¡bbhk

h¡
MF ¢¡1

i
kl"Z

tV

bbhl

Ã
hp ∂ t

o
bFij

∂ txr

!
tdv

#
tvp

r

We can write Eqn.(35) as,

∂ t
o

bFij (txj , t)
∂t

= ¡ bF
ijpr

tvp
r . (36)

In the above equation,
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¡ bF
ijpr = bbhk

h¡
MF ¢¡1

i
kl

(37)
·Z

tV

bbhl
t
o
bFmj

µ
∂ hp

∂ txm
δri ¡ 1

3
δim

∂ hp

∂ txr

¶
tdv

¸

¡bbhk

h¡
MF ¢¡1

i
kl"Z

tV

bbhl

Ã
hp ∂ t

o
bFij

∂ txr

!
tdv

#

3.3 Linearization of the momentum balance equations
We use a linearized approach to the momentum conservation at time t + ¢t,

£tRext¤k
i ¡

£tRint¤k
i +

2
4

∂
³
[Rext]ki ¡

£
Rint

¤k
i

´

∂ t

3
5

t+¢t

¢t = 0 (38)

in the above equation, k = 1, ...., NNODES and i = 1, .., 3.
Using Eqn. (18) and being, in our Eulerian formulation, the external loads function of time and of

the spatial position we get [26],
"

∂ [Rext]ki
∂ t

#

t+¢t

=
Z

tV
hk

"
∂

¡
ρ fV

i

¢

∂ t

#

t+¢t

tdv +
Z

t∂ V
hk

·
∂ ti

∂ t

¸

t+¢t

tdv (39)

where the spatial volume is constant with time.
Using now Eqn. (19) we get,

"
∂

£
R int

¤k
i

∂ t

#

t+¢t

=
Z

tV

∂ hk

∂ txj

·
∂ ¾ij

∂ t

¸

t+¢t

tdv . (40)

For the …nite element model we can write the hyperelastic constitutive equation (14) as,

tσ ij = tσij

³
t
o

bFlm,t £
´

. (41)

Hence,

∂ ¾ij

∂ t
=

∂ ¾ij

∂ bFlm

∂ bFlm

∂ t
+

∂ ¾ij

∂ £
∂ £
∂ t

. (42)

Using Eqns. (27) and (36) we get,

·
∂ ¾ij

∂ t

¸

t+¢t
=

·
∂ ¾ij

∂ bFlm

¸

t+¢t

h
¡ bF

lmkr

i
t+¢t

t+¢tvk
r

+
·

∂ ¾ij

∂ £

¸

t+¢t

£
¡£

kr
¤
t+¢t

t+¢tvk
r (43)

For the sake of simplicity we consider constant external loads; therefore, using the equations derived
above we get from (38),
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Z

tV
f∂ hk

∂ txj
[
µ

∂ ¾ij

∂ bFlm

¶

t+¢t

³
¡ bF

lmkr

´
t+¢t

+
µ

∂ ¾ij

∂ £

¶

t+¢t

¡
¡£

kr
¢

t+¢t ] tdvg t+¢tvk
r = (44)

1
¢t

³£
tRext

¤k
i ¡

£
tRint

¤k
i

´
.

The integral in the above expression is the consistent sti¤ness matrix.
For the hyperelastic material considered in Eqn.(14) we can write,

·
∂ σ ij

∂ bFlm

¸

t
=

G
t£

µ
δli

t
o

bFjm + δlj
t
o

bFim ¡ 2
3

t
o

bFlmδij

¶
(45)

and,
·

∂ σ ij

∂ £

¸

t
=

¡
δijK ¡ tτ ij

¢ 1
(t£)2

. (46)

4 The numerical algorithm
Since we seek the stationary regime of the deformation processes under analysis, we develop a time
stepping algorithm using Eqn. (44); the time is incremented until the stationary regime is reached:

°°t+¢tv ¡ tv
°° 0 V TOL (47)

The implemented algorithm is:

1. t = 0

2. t
oF = 1

3. ite = 0

4. t+¢tv(ite) =tv

5. t+¢t
o F(ite) = t

oF

6. ite = ite + 1

7.
Calculate t+¢t£ and t+¢t

o
bF with (20, 21, 24,

29, 30 and 33) using t+¢t
o F(ite¡1)

8. Calculate t+¢v(ite) using (44) with a direct solver

9. Calculate t+¢t
o F(ite) using (9)

10. IF

" °°°t+¢t
o F(ite) ¡ t+¢t

o F(ite¡1)
°°° > FT OL

.OR.
°°t+¢tv(ite) ¡ t+¢tv(ite¡1)

°° > V TOL

#

T HEN GO T O 6

11. t = t + ¢t
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12. IF
°°t+¢tv ¡ tv

°° > V T OL T HEN GO TO 3

13. The stationary regime has been reached.

It is important to notice that the intermediate steps are not in equilibrium and the momentum
balance equation is only satis…ed when the stationary regime is reached.

5 Numerical examples
In order to investigate the behavior of the new …nite element formulation, in the present section we
analyze an elastic material being drawn in a converging channel and an elastic material being expanded
in a diverging channel.

For both cases we assume that the channel walls are frictionless and that the material completely …lls
the channel. Also two extreme cases are investigated: a very compressible material with a low Poisson
coe¢cient, ν = 0.1, and a nearly incompressible material with a high Poisson coe¢cient, ν = 0.49. For
all the examples we use as default values a Young modulus of E = 2.1E06 kg

cm2 and ¢t = 1.E ¡ 03 sec .
The e¤ect of di¤erent boundary conditions is also discussed.
All the cases are analyzed using 3D brick elements with 8 nodes for interpolating the velocities, t£

and t
o

bF .
It is important to notice that, even tough in section 3 when we presented the …nite element

formulation we considered a very general case with di¤erent interpolations for the di¤erent variables,
in the actual numerical implementation we used the same interpolation for the three …elds (tv, t£ and
t
o

bF ).

5.1 Converging channel
We consider two sets of boundary conditions:

Case 1
·

Velocity prescribed at the channel outlet
Unloaded edge at the inlet

¸
(pul ling the material)

Case 2
·

Velocity prescribed at the channel inlet
Unloaded edge at the outlet

¸
(pushing the material)

In both cases h
H = 0.5 (Fig. 1).

5.1.1 Case 1

The boundary conditions for this case are:

tvn = 0 on the side walls
tvx = vBC = 100

cm
sec

at the out‡ow boundary

t
oF = 1 at the in‡ow boundary

where vn is the velocity components normal to the wall.
In Fig. 1 we display the mesh (117 elements) used to solve this case.
In Figs. 2 and 3 we present the …nite element results for the stationary regime for a material with

ν = 0.1 and in Figs. 4 and 5 the …nite element results corresponding to a material with ν = 0.49.
Comments:

² For both materials σxx ¡! 0 at the channel inlet.

² For both materials t
oFyy ¡! 0.5 at the channel outlet (theoretical result)
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5.1.2 Case 2

In this case we impose:

tvn = 0 on the side walls
tvx = vBC = 100

cm
sec

at the in‡ow boundary

σxx = 0 at the out‡ow boundary

Now the material is not undeformed at the in‡ow boundary, so we impose ∂ t
oFxx
∂ x = 0 to model a

constant state stress in the interval [¡1, 0]. This condition is modelled by imposing,

t
oFxx(tx = 0) = t

oFxx(tx = ¢x) .

We use the same mesh shown in Fig. 1.
In Figs. 6 and 7 we present the …nite element results corresponding to the stresses and deformation

gradient tensor components for a material with ν = 0.1. For £, we compare the results obtained using
the original mesh and the mesh shown in Fig. 8 (207 elements). We see in Fig. 9 that even if both
solutions are practically indistinguishable, when we look closer, the solutions show a converging behavior
when the mesh is re…ned. The same observation can be made for the material with ν = 0.49 (Fig. 10).

For both materials we observe a good convergence to theoretical results. As an example, we show,
in Fig. 11, the values of £ and t

oFyy at the gauss points nearest the channel outlet compared with the
theoretical result for the material with ν = 0.1.

Also di¤erent time steps were used, in the range 10¡5 < ¢t < 10¡2 , and no signi…cant di¤erences
were detected: convergence to theoretical results is more sensible to mesh re…nement than to changes in
¢t in this range.

5.2 Diverging channel
For this case h

H = 2.0 and we consider the same two sets of boundary conditions that we analyzed in the
previous example.

The mesh used in the analyses of the diverging channel is shown in Fig. 12.
In Figs. 13, 14, 17 and 18 we present the results corresponding to ν = 0.1 and in Figs. 15, 16, 19

and 20 the ones corresponding to ν = 0.49.

5.3 Stability of the results
It is important to highlight that the pressure distributions for the cases with ν = 0.49 do not present any
indication of instabilities (checker modes) either in the converging or diverging channels [19] [24] [27].

6 Conclusions
A new …nite element formulation was developed for modeling stationary elastic deformation processes with
…nite strains. The new formulation is based on an Eulerian description of motion and the deformation
history is recovered by integrating the deformation gradient tensor along the streamlines.

The new formulation is stable and it provides good results for the complete range of Poisson coe¢cient
values.

As a further step in the development of the new …nite element formulation we shall incorporate the
description of the free surfaces via the pseudo-concentrations technique [6] [7].
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Figure 1: Converging channel. Mesh with 117 elements
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(a)

(b)

Figure 2: Converging channel. Case 1 (ν = 0.1) . Stresses: (a) σxx; (b) pressure
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Figure 3: Converging channel. Case 1 (ν = 0.1) . Deformation gradient tensor along the channel axis: (a)
Components; (b)£
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(a)

(b)

Figure 4: Converging channel. Case 1 (ν = 0.49) . Stresses: (a) σxx ; (b) pressure
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Figure 5: Converging channel. Case 1 (ν = 0.49) . Deformation gradient tensor along the channel axis:
(a) Components; (b)£
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Figure 6: Converging channel. Case 2 (ν = 0.1) . Stresses: (a) σxx; (b) pressure
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Figure 7: Converging channel. Case 2 (ν = 0.1) . Deformation gradient tensor along the channel axis.
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Figure 8: Converging channel. Mesh with 207 elements
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Figure 9: Converging channel. Case 2 (ν = 0.1) . Comparisson between the meshes in Fig. 1 and in Fig.
8 (£)
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Figure 10: Converging channel. Case 2 (ν = 0.49) . Comparisson between the meshes in Fig. 1 and in
Fig. 8 (£)
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Figure 11: Converging channel. Case 2 (ν = 0.1). Comparison between meshes in Fig. 1 and in Fig. 8
and theoretical values at the channel outlet
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Figure 12: Diverging channel. Mesh with 207 elements
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Figure 13: Diverging channel. Case 1 (ν = 0.1) . Stresses: (a) σxx ; (b) pressure
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Figure 14: Diverging channel. Case 1 (ν = 0.1) . Deformation gradient tensor along the channel axis: (a)
Components; (b)£

26



(a)

(b)

Figure 15: Diverging channel. Case 1 (ν = 0.49) . Stresses: (a) σxx; (b) pressure
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Figure 16: Diverging channel. Case 1 (ν = 0.49) . Deformation gradient tensor along the channel axis:
(a) Components; (b)£
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Figure 17: Diverging channel. Case 2 (ν = 0.1) . Stresses: (a) σxx ; (b) pressure
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Figure 18: Diverging channel. Case 2 (ν = 0.1) . Deformation gradient tensor along the channel axis: (a)
Components; (b)£
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Figure 19: Diverging channel. Case 2 (ν = 0.49) . Stresses: (a) σxx; (b) pressure
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Figure 20: Diverging channel. Case 2 (ν = 0.49) . Deformation gradient tensor along the channel axis:
(a) Components; (b)£
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