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Abstract

A new rigid-viscoplastic model that includes the e¤ect of thermal
strains when modeling steady state metal forming processes was devel-
oped. A symmetric approximation to the resulting non-symmetric sti¤-
ness matrix was derived.The thermo-mechanical ‡ow formulation was im-
plemented using the pseudo-concentrations technique.The new formula-
tion was numerically tested showing that it provides reliable results.

1 Introduction
During hot metal forming processes the non-homogeneous thermal evolution of
the workpiece produces di¤erential thermal expansions in the processed mate-
rial. These thermal strains are enhanced by the phase transformations that take
place at elevated temperatures.

In Figs. 1 and 2 we present the dilatometries corresponding to two low al-
loyed steels under di¤erent cooling conditions, both dilatometries were obtained
during continuous cooling transformation tests. In the …rst case the steel under-
goes a martensitic transformation (quenching) and in the second case the steel
transforms from austenite to ferrite / perlite.

As an example of metal forming processes in which the thermal strains play
a fundamental role we may refer to the continuous casting processes, where
the outer part of the solidifying strand cools faster than the inner part, induc-
ing therefore di¤erential thermal strains in the strand. These thermal strains
are enhanced due to the liquid-solid transformation and due to the solid state
phase transformations that take place at temperatures below solidus; the di¤er-
ential thermal strains may induce crack formation inside the solidifying strand
[1]. In other processes such as hot rolling, quenching, etc. there are also non-
homogeneous temperature evolutions that induce high stresses which may dam-
age the processed material.

The non-homogeneous thermal strains inside the workpiece, which include
the transformation induced strains, need to be adequately controlled during
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metal forming processes. Therefore it is very important that when numerically
simulating hot metal forming processes to investigate their technological windows
[2], we properly include in the models the e¤ect of the thermal strains.

The modeling of coupled thermo-mechanical metal forming processes has
been discussed in a number of publications, among them we can refer to Refs.
[3] - [8].

In the case of the metal forming simulations developed using the ‡ow formu-
lation [9] (rigid-viscoplastic material models [10]) the developments available in
the literature only include for the thermo-mechanical coupling:

² In the energy balance equations, the term that accounts for the heat gen-
erated by the viscoplastic dissipation.

² In the momentum balance equations, the temperature dependence of the
material properties.

In all cases the thermal strains are neglected.
In the second section of this paper we discuss the inclusion of thermal strains

in the ‡ow formulation, focusing our discussion on steady state analyses. In the
third section we comment on the implementation of our formulation via the
pseudo-concentrations technique [11] - [18].

To investigate the performance of the developed thermo-mechanical formu-
lation in the fourth section of this paper we discuss selected numerical examples.

2 Inclusion of thermal strains in the ‡ow formu-
lation

For the rigid-viscoplastic material constitutive relation that is used in the ‡ow
formulation we decompose the total strain rate into its viscoplastic and thermal
components,

¢εij = ¢ε
V P
ij + ¢ε

T H
ij (1a)

¢ε
T H
ij =

D(αT )
Dt

δij . (1b)

In Eqn. (1b) we use the notation D(¢)
Dt to indicate the material time deriva-

tive, that is to say, we keep constant the material particle when we calculate
the time derivative [19]. Also α is the total expansion coe¢cient, function of
the material temperature, T .

Using the standard expression for calculating the material time derivative
[19] we get,

D(αT )
Dt

=
∂(αT )

∂t
+ v ¢ r(αT ) , (2)
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where v is the material velocity.
Hence, for a steady-state problem, we can write Eqn. (1a) as,

¢εij = ¢ε
V P
ij + v ¢ r(αT) δ ij . (3)

For modeling metal forming processes we use an associated von Mises vis-
coplastic constitutive relation. The incompressibility of the associated von
Mises viscoplastic ‡ow [10] is expressed as,

¢ε
V P
v = ¢ε

V P
ij δij = 0 . (4)

For this relation we de…ne the equivalent viscoplastic strain rate as [10],

¢
ε

V P
= (

2
3

¢ε
V P
ij

¢ε
V P
ij )

1
2 . (5)

To describe the material hardening we use the Fields-Backofen hardening
model, [20] [21],

σy = σo(T)
¡
εV P ¢n

µ ¢
ε

V P ¶m

(6)

where the total equivalent viscoplastic strain (εV P ) is obtained from [13],

¢
ε

V P
=

∂ εV P

∂ t
+ v ¢ rεV P . (7)

Hence, we get [9]

sij = 2 µ
·

¢
ε

V P
ij

¸0
(8a)

µ =
1
3

σo(T)
¡
εV P

¢n

µ ¢
ε

V P ¶(1¡m)
. (8b)

In the above equations sij are the deviatoric components of the Cauchy

stress tensor (σij) and
·

¢ε
V P
ij

¸0
are the deviatoric components of the viscoplastic

strain rate tensor.
It is important to consider that during solid phase transformations the yield

stress has to be determined using, in a weighted average, the yield stress of each
phase and also taking into account the phenomenon of transformation plasticity
which is discussed in Refs. [22] and [23].

For solving a steady state problem we start from a trial equilibrium con-
…guration and we calculate its corresponding velocity …eld via the Principle of
Virtual Power; since the velocity …eld has to ful…ll the incompressibility con-
straint in Eqn. (4) we impose it using an augmented Lagrangian technique [14],
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[24]. Once the equilibrium velocity …eld is calculated, the assumed equilibrium
con…guration is modi…ed using the staggered iterative procedure that we are
going to discuss in the next section.

The solution of the material nonlinearities (8b) together with the augmented
Lagrangian technique produce an iterative system of equations.

For the “k + 1” iteration we get,
Z

V
s(k+1)

ij δ
h¢
εij

i0
dv +

Z

V
p(k+1) δ

¢
εv dv = R . (9)

The term on the r.h.s., R, is the virtual power of the external loads and,

v(k+1) = v(k) + ¢v(k+1) (10a)
δv = δ ¢v(k+1) (10b)

¢
ε
(k+1)
ij =

¢
ε
(k)
ij + ¢

¢
ε

(k+1)
ij (10c)

s(k+1)
ij = 2

h
µ

¢
ε

0
ij

i(k+1)
(10d)

δ ¢εij = δ ¢ ¢ε
(k+1)
ij . (10e)

The pressure …eld is calculated using the augmented Lagrangian technique
[24],

p(k+1) = p(k) + κ
·

¢ε
V P
v

¸(k+1)

= p(k) + κ
·

¢ε
V P
v

¸(k)

+ κ
·
¢ ¢ε

V P
v

¸(k+1)

. (11)

In the above κ is the penalty coe¢cient used with the augmented Lagrangian
technique to impose incompressibility. A discussion on its adequate selection
was presented in Ref. [14].

Also, from the strain rate decomposition in Eqn. (1a) we get,

·
¢ε
V P
ij

¸(k)

= ¢ε
(k)
ij ¡

·
¢ε
T H
ij

¸(k)

(12a)

·
¢

¢
ε

V P
ij

¸(k)

= ¢
¢
ε
(k)
ij ¡

·
¢

¢
ε

T H
ij

¸(k)

. (12b)

For a steady state problem, and assuming that the temperature …eld is known
we get from Eqn. (3),

¢
ε

T H
v = 3v ¢ r (αT ) (13a)

¢
¢
ε

T H
v = 3 ¢v ¢ r (αT) . (13b)
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We now introduce the …nite element method using a three …eld interpolation
[14] ; hence, we get

·Z

V
BT

D (2µ)
(k)

BD dv +
Z

V
BT

V κ BV dv ¡ 3
Z

V
BT

V κ Cdv
¸

¢
¢
U

(k+1)
(14)

= R ¡
Z

V
BT

D S(k) dv ¡
Z

V
BT

V (P (k) + κ
·

¢ε
V P
v

¸(k)

) dv .

In the above equation R is the nodal vector equivalent (in the virtual work
sense) to the external loads acting on the body. Also at any point inside an
element,

S =

2
6666664

s11
s22
s33
s12
s23
s31

3
7777775

. (15)

The vector P , contains the terms that de…ne the pressure …eld inside each
element.

The interpolations used above are discussed in Ref. [14]; being
¢
U the vector

of nodal velocities, we can write

h
¢

¢
ε

0i(k+1)
= BD ¢

¢
U

(k+1)

(16a)
h
¢

¢
εv

i(k+1)
= BV ¢

¢
U

(k+1)

. (16b)

At any point inside an element the components of
¢
ε

0
ij and

¢
εv are ordered in

the column arrays ¢ε
0
and ¢εv respectively.

The last term inside the bracket on the l.h.s. of Eqn. (14) comes from,
Z

V
δ ¢εV κ 3 ¢v ¢ r (αT ) dv .

In the H1-P0 hexahedral element [14] we calculate the term, [¢v ¢ r (αT )] ,
at the element center and then we interpolate it as a constant over the element
volume; hence,

C =
h
¡ ¡ ¡ ¡ ¡ ¡ jr (αT )jO1 hO

k jr (αT)jO2 hO
k jr (αT)jO3 hO

k ¡ ¡ ¡ ¡ ¡ ¡
i

.
(17)

In the above equation we have written in detail the C¡components corre-
sponding to the node “k”. Also, j¢jO indicates that the quantity within the bars
is calculated at the element center and [¢]i is the i ¡ th component of a vector.
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The term
£
3

R
V BT

V κ Cdv
¤

adds a non-symmetric component to the sti¤ness
matrix.

2.1 A symmetric formulation
For implementing the above developed formulation in an existing …nite element
code it is usually preferred to work with symmetric matrices, even if convergence
may be slower.

Usual brute-force symmetrization procedures such as, preserving on the l.h.s.
of Eqns. (14) only the symmetric part of

£
3

R
V BT

V κ C dv
¤

or sending the term£
3

R
V BT

V κ C dv
¤

to the r.h.s. with its value calculated from the velocity …eld
obtained in the previous iteration, did not converge in our numerical tests.

For symmetrizing the sti¤ness matrix we introduce the following assumption:

¢ ¢ε
T H
v =

·
¢ε
T H
v

¸(k)

h¢
εv

i(k)
¢ ¢εv . (18)

Hence, we can use instead of the non-symmetric term
£
3

R
V BT

V κ C dv
¤

the
symmetric one,

¢K =
Z

V
BT

V κ

·
¢ε
T H
v

¸(k)

h¢εv

i(k) BV dv . (19)

Our numerical experimentation has shown that when using the above pro-
cedure the iterative method converges in a reasonable number of iterations.

3 Implementation via the pseudo-concentrations
technique

In previous references we implemented the ‡ow formulation using an Eulerian
description of motion, via Thompson’s pseudo-concentrations technique [11] -
[18] and [7].

We use a …xed mesh with the material moving inside it; at each point interior
to the mesh we de…ne a variable named pseudo - concentration (c):

c > 0 () there is material at the point,
c < 0 () there is no material at the point.

At the points where c < 0 we use a very low viscosity (not zero to avoid a
singular si¤ness matrix) and α = 0.
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In previous applications of the pseudo-concentrations technique we have
dealt with incompressible problems; however, in the present case the mate-
rial density (ρ) rather than being constant is a function of the temperature:
ρ = ρ(T ). We can write the mass conservation principle as [19],

∂ρ
∂t

+ r ¢ (ρ v) = 0 . (20)

We now de…ne the concentration as concentration per unit mass and its
conservation equation is,

∂(ρc)
∂t

+ r ¢ (ρ c v) = 0 . (21)

Using together Eqns. (20) and (21) we get,

v ¢ rc = 0 (stationary problems) (22a)
∂c
∂t

+ v ¢ rc = 0 (transient problems) (22b)

Some notes regarding our Eulerian formulation based on the pseudo-concentrations
technique:

² It provides the free surfaces in stationary and transient problems without
any special free surface algorithm.

² It does not require a remeshing algorithm, usually needed when using
Lagrangian or ALE formulations.

For the complete mesh we can re-write Eqn. (7) as,

v ¢ rεV P =
hci
jcj

¢
ε

V P
(stationary problems) (23a)

∂εV P

∂t
+ v ¢ rεV P =

hci
jcj

¢
ε

V P
(transient problems) . (23b)

In the above, h¢i is a Macauley bracket.
A staggered iterative scheme was implemented to couple the equilibrium

equations to the c-transport and ε-transport equations.
For stationary problems we start the iterative algorithm from a trial c-

distribution and zero trial velocities, except at those points where the velocities
are prescribed as boundary conditions; hence we start with a trial velocity …eld
bv.
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1. l = ¡1
2. l = l + 1

(i) j = 0; v(j) = bv
(ii) j = j + 1

Solve the workpiece nonlinear equilibrium equations keeping
constant the c-distribution and the ε-distribution (Eqns. (9)- (10e))

v(j) = f ( v(j¡1), c(l), ε(l))

(iii) IF kv(j)¡v(j¡1)k2

kv(j)k2

· UTOL .AND.
°°°°

¢ε
V P
v

°°°°
1

· V T OL

T HEN ¡! v(l) = v(j)GO T O 3
ELSE ¡! GO TO 2.(ii)

3. Calculate the c-distribution and ε-distribution integrating (22a)
and (23a) using the SUPG technique [25]

4. IF l = 0 GO T O 2

ELSE ¡! IF kv(l)¡v(l¡1)k2

kv(l)k2

· UTOL

T HEN ¡! CONV ERGENCE
ELSE ¡! GO TO 2

Box I: Staggered iterative algorithm for coupling the equilibrium equations
to the c¡transport and ε-transport equations.

When using the pseudo-concentrations technique, the coupling between the
thermal and mechanical models is performed as discussed in Ref. [7].

4 Numerical experimentation
In this section we are going to discuss the numerical results that we obtained
when solving selected steady state problems, using the developed thermo-mechanical
formulation, implemented in our computer code METFOR.

4.1 Flow through a constant section duct under a thermal
gradient

In this example we investigate the steady state ‡ow through a constant square
section duct with frictionless walls. We assume that the material ‡owing through
the duct is sub jected to a constant axial thermal gradient.

The material properties (6) are,

σo(T ) = 229.41 exp(¡0.0029T )
n = 0.2520
m = 0.1430
α = 0.00002

and the axial temperature gradient is,
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∂T
∂x

= 500 .

The analytical solution is for the average velocity at each section,

v(x) = v(0) exp(3α
∂T
∂x

x) .

In Fig. 3 we compare the …nite element and analytical solutions, obtaining
a perfect match.

4.2 Flow through a nozzle under a thermal gradient
In this example we discuss the plane strain, steady state ‡ow of a material
through a convergent nozzle with frictionless walls. Again we assume that the
material ‡owing through the duct is subjected to a constant axial thermal gra-
dient and we use the same material parameters as in the previous example.

In Fig. 4 we show the …nite element mesh that we used to analyze this
example and in Fig. 5 we compare the average axial velocity for each section,
calculated with METFOR and with an analytical solution. Again both solutions
present an excellent agreement.

4.3 Plane strain plate
We consider a square plate free to expand in its plane and subjected to a plane
strain state, under a constant temperature gradient along the horizontal side,

∂T
∂x

= 500 .

Material properties:

σo = 3.00
n = 0
m = 1
α = 0.0002 .

We are going to compare for this example two solutions:

² An Eulerian solution obtained using the thermo-mechanical formulation
that we developed above.

² A Lagrangian solution obtained using a thermo-elastic large strains for-
mulation in which:
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t
0H

T H
ij = α(tT ¡0 T) δ ij .

The t
0HT H

ij are the Hencky (logarithmic) thermal strains calculated for a
temperature distribution given by tT(x, y) and referred to a state with a con-
stant 0T temperature. The elastic response of the material was modeled as
almost incompressible.

In Fig. 6 we present the results of the Eulerian analysis in terms of pseudo-
concentrations distribution.

In Figs. 7 and 8 we compare the analytical and Lagrangian solutions with
the Eulerian solutions obtained using meshes with increasing re…nement in the
vertical direction; the comparison shows that the new formulation produces very
good results.

4.4 Three-dimensional expansion

In this case we analyze the ‡ow of a material under a constant axial thermal
gradient; the material is free to expand in every direction. The constitutive
properties are the same as the ones considered in the previous case.

In Fig. 9 we display the resulting pseudo-concentrations distribution that
we get using the developed formulation; the rounded corners are due to the
numerical di¤usion introduced when solving the transport equation (22a). In
Fig. 10 we present the resulting volumetric ‡ow compared with the volumetric
‡ow calculated using an analytical solution.

5 Conclusions
A new rigid-viscoplastic model that includes the e¤ect of thermal strains when
modeling steady state metal forming processes was developed. A symmetric
approximation to the resulting non-symmetric sti¤ness matrix was derived.

The new formulation expands the applicability of the rigid-viscoplastic ma-
terial models, since the alternative for simulating the e¤ect of thermal strains
in metal forming models is to introduce the elastic e¤ects into the model, with
the corresponding increase in computational times.

The thermo-mechanical ‡ow formulation was implemented using the pseudo-
concentrations technique.

The new formulation was numerically tested in simple problems showing that
it provides reliable results. The next step will be to use it for the solution of
involved industrial models of manufacturing processes (e.g. continuous casting
of steel slabs, hot rolling, etc.); for those cases it will be fundamental to have as
input to the model reliable data of mechanical material properties as a function
of temperature [26].
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Figure 1: Dilatometry of a steel showing a martensitic transformation when
cooling
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Figure 2: Dilatometry of a steel showing a di¤usional transformation when
cooling
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Figure 3: Square section duct with a constant thermal gradient
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Figure 4: Flow through a nozzle under thermal gradient. Finite element mesh
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Figure 5: Flow through a nozzle under thermal gradient. Average axial velocity
results
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Figure 6: Plane strain plate. Pseudo-concentrations distribution (the grey areas
correspond to c<0)
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Figure 7: Plane strain plate. Volumetric ‡ow
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